
SQL1

Student Guide • Volume 2

40057GC10
Production 1.0
July 2001
D33479

Copyright © Oracle Corporation, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Nancy Greenberg
Priya Nathan

Technical Contributors
and Reviewers

Josephine Turner
Martin Alvarez
Anna Atkinson
Don Bates
Marco Berbeek
Andrew Brannigan
Laszlo Czinkoczki
Michael Gerlach
Sharon Gray
Rosita Hanoman
Mozhe Jalali
Sarah Jones
Charbel Khouri
Christopher Lawless
Diana Lorentz
Nina Minchen
Cuong Nguyen
Daphne Nougier
Patrick Odell
Laura Pezzini
Stacey Procter
Maribel Renau
Bryan Roberts
Helen Robertson
Sunshine Salmon
Casa Sharif
Bernard Soleillant
Craig Spoonemore
Ruediger Steffan
Karla Villasenor
Andree Wheeley
Lachlan Williams

Publisher

Sheryl Domingue

Preface

Curriculum Map

I Introduction
Objectives I-2
Oracle9i I-3
Oracle9i Application Server I-5
Oracle9i Database I-6
Oracle9i: Object Relational Database Management System I-8
Oracle Internet Platform I-9
System Development Life Cycle I-10
Data Storage on Different Media I-12
Relational Database Concept I-13
Definition of a Relational Database I-14
Data Models I-15
Entity Relationship Model I-16
Entity Relationship Modeling Conventions I-17
Relating Multiple Tables I-19
Relational Database Terminology I-20
Relational Database Properties I-21
Communicating with a RDBMS Using SQL I-22
Relational Database Management System I-23
SQL Statements I-24
Tables Used in the Course I-25
Summary I-26

1 Writing Basic SQL SELECT Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Selecting All Columns 1-5
Selecting Specific Columns 1-6
Writing SQL Statements 1-7
Column Heading Defaults 1-8
Arithmetic Expressions 1-9
Using Arithmetic Operators 1-10
Operator Precedence 1-11
Using Parentheses 1-13
Defining a Null Value 1-14
Null Values in Arithmetic Expressions 1-15
Defining a Column Alias 1-16
Using Column Aliases 1-17
Concatenation Operator 1-18
Using the Concatenation Operator 1-19

Contents

iii

Literal Character Strings 1-20
Using Literal Character Strings 1-21
Duplicate Rows 1-22
Eliminating Duplicate Rows 1-23
SQL and iSQL*Plus Interaction 1-24
SQL Statements Versus iSQL*Plus Commands 1-25
Overview of iSQL*Plus 1-26
Logging In to iSQL*Plus 1-27
The iSQL*Plus Environment 1-28
Displaying Table Structure 1-29
Interacting with Script Files 1-31
Summary 1-34
Practice Overview 1-35

2 Restricting and Sorting Data
Objectives 2-2
Limiting Rows Using a Selection 2-3
Limiting the Rows Selected 2-4
Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Conditions 2-7
Using Comparison Conditions 2-8
Other Comparison Conditions 2-9
Using the BETWEEN Condition 2-10
Using the IN Condition 2-11
Using the LIKE Condition 2-12
Using the NULL Conditions 2-14
Logical Conditions 2-15
Using the AND Operator 2-16
Using the OR Operator 2-17
Using the NOT Operator 2-18
Rules of Precedence 2-19
ORDER BY Clause 2-22
Sorting in Descending Order 2-23
Sorting by Column Alias 2-24
Sorting by Multiple Columns 2-25
Summary 2-26
Practice 2 Overview 2-27

3 Single-Row Functions
Objectives 3-2
SQL Functions 3-3
Two Types of SQL Functions 3-4
Single-Row Functions 3-5
Character Functions 3-7

iv

Case Manipulation Functions 3-9
Using Case Manipulation Functions 3-10
Character-Manipulation Functions 3-11
Using the Character-Manipulation Functions 3-12
Number Functions 3-13
Using the ROUND Function 3-14
Using the TRUNC Function 3-15
Using the MOD Function 3-16
Working with Dates 3-17
Arithmetic with Dates 3-19
Using Arithmetic Operators with Dates 3-20
Date Functions 3-21
Using Date Functions 3-22
Practice 3, Part One: Overview 3-24
Conversion Functions 3-25
Implicit Data Type Conversion 3-26
Explicit Data Type Conversion 3-28
Using the TO_CHAR Function with Dates 3-31
Elements of the Date Format Model 3-32
Using the TO_CHAR Function with Dates 3-36
Using the TO_CHAR Function with Numbers 3-37
Using the TO_NUMBER and TO_DATE Functions 3-39
RR Date Format 3-40
Example of RR Date Format 3-41
Nesting Functions 3-42
General Functions 3-44
NVL Function 3-45
Using the NVL Function 3-46
Using the NVL2 Function 3-47
Using the NULLIF Function 3-48
Using the COALESCE Function 3-49
Conditional Expressions 3-51
The CASE Expression 3-52
Using the CASE Expression 3-53
The DECODE Function 3-54
Using the DECODE Function 3-55
Summary 3-57
Practice 3, Part Two: Overview 3-58

4 Displaying Data from Multiple Tables
Objectives 4-2
Obtaining Data from Multiple Tables 4-3

v

Cartesian Products 4-4
Generating a Cartesian Product 4-5
Types of Joins 4-6
Joining Tables Using Oracle Syntax 4-7
What is an Equijoin? 4-8
Retrieving Records with Equijoins 4-9
Additional Search Conditions Using the AND Operator 4-10
Qualifying Ambiguous Column Names 4-11
Using Table Aliases 4-12
Joining More than Two Tables 4-13
Non-Equijoins 4-14
Retrieving Records with Non-Equijoins 4-15
Outer Joins 4-16
Outer Joins Syntax 4-17
Using Outer Joins 4-18
Self Joins 4-19
Joining a Table to Itself 4-20
Practice 4, Part One: Overview 4-21
Joining Tables Using SQL: 1999 Syntax 4-22
Creating Cross Joins 4-23
Creating Natural Joins 4-24
Retrieving Records with Natural Joins 4-25
Creating Joins with the USING Clause 4-26
Retrieving Records with the USING Clause 4-27
Creating Joins with the ON Clause 4-28
Retrieving Records with the ON Clause 4-29
Creating Three-Way Joins with the ON Clause 4-30
INNER Versus OUTER Joins 4-31
LEFT OUTER JOIN 4-32
RIGHT OUTER JOIN 4-33
FULL OUTER JOIN 4-34
Additional Conditions 4-35
Summary 4-36
Practice 4, Part Two: Overview 4-37

5 Aggregating Data Using Group Functions
Objectives 5-2
What Are Group Functions? 5-3
Types of Group Functions 5-4
Group Functions Syntax 5-5
Using the AVG and SUM Functions 5-6
Using the MIN and MAX Functions 5-7

vi

Using the COUNT Function 5-8
Using the DISTINCT Keyword 5-10
Group Functions and Null Values 5-11
Using the NVL Function with Group Functions 5-12
Creating Groups of Data 5-13
Creating Groups of Data: The GROUP BY Clause Syntax 5-14
Using the GROUP BY Clause 5-15
Grouping by More Than One Column 5-17
Using the GROUP BY Clause on Multiple Columns 5-18
Illegal Queries Using Group Functions 5-19
Excluding Group Results 5-21
Excluding Group Results: The HAVING Clause 5-22
Using the HAVING Clause 5-23
Nesting Group Functions 5-25
Summary 5-26
Practice 5 Overview 5-27

6 Subqueries
Objectives 6-2
Using a Subquery to Solve a Problem 6-3
Subquery Syntax 6-4
Using a Subquery 6-5
Guidelines for Using Subqueries 6-6
Types of Subqueries 6-7
Single-Row Subqueries 6-8
Executing Single-Row Subqueries 6-9
Using Group Functions in a Subquery 6-10
The HAVING Clause with Subqueries 6-11
What is Wrong with this Statement? 6-12
Will this Statement Return Rows? 6-13
Multiple-Row Subqueries 6-14
Using the ANY Operator in Multiple-Row Subqueries 6-15
Using the ALL Operator in Multiple-Row Subqueries 6-16
Null Values in a Subquery 6-17
Summary 6-18
Practice 6 Overview 6-19

vii

7 Producing Readable Output with iSQL*Plus
Objectives 7-2
Substitution Variables 7-3
Using the & Substitution Variable 7-5
Character and Date Values with Substitution Variables 7-7
Specifying Column Names, Expressions, and Text 7-8
Defining Substitution Variables 7-10
DEFINE and UNDEFINE Commands 7-11
Using the DEFINE Command with & Substitution Variable 7-12
Using the VERIFY Command 7-14
Customizing the iSQL*Plus Environment 7-15
SET Command Variables 7-16
iSQL*Plus Format Commands 7-17
The COLUMN Command 7-18
Using the COLUMN Command 7-19
COLUMN Format Models 7-20
Using the BREAK Command 7-21
Using the TTITLE and BTITLE Commands 7-22
Creating a Script File to Run a Report 7-23
Sample Report 7-25
Summary 7-26
Practice 7 Overview 7-27

8 Manipulating Data
Objectives 8-2
Data Manipulation Language 8-3
Adding a New Row to a Table 8-4
The INSERT Statement Syntax 8-5
Inserting New Rows 8-6
Inserting Rows with Null Values 8-7
Inserting Special Values 8-8
Inserting Specific Date Values 8-9
Creating a Script 8-10
Copying Rows from Another Table 8-11
Changing Data in a Table 8-12
The UPDATE Statement Syntax 8-13
Updating Rows in a Table 8-14
Updating Two Columns with a Subquery 8-15
Updating Rows Based on Another Table 8-16
Updating Rows: Integrity Constraint Error 8-17
Removing a Row from a Table 8-18
The DELETE Statement 8-19

viii

Deleting Rows from a Table 8-20
Deleting Rows Based on Another Table 8-21
Deleting Rows: Integrity Constraint Error 8-22
Using a Subquery in an INSERT Statement 8-23
Using the WITH CHECK OPTION Keyword on DML Statements 8-25
Overview of the Explict Default Feature 8-26
Using Explicit Default Values 8-27
The MERGE Statement 8-28
The MERGE Statement Syntax 8-29
Merging Rows 8-30
Database Transactions 8-32
Advantages of COMMIT and ROLLBACK Statements 8-34
Controlling Transactions 8-35
Rolling Back Changes to a Marker 8-36
Implicit Transaction Processing 8-37
State of the Data Before COMMIT or ROLLBACK 8-38
State of the Data after COMMIT 8-39
Committing Data 8-40
State of the Data After ROLLBACK 8-41
Statement-Level Rollback 8-42
Read Consistency 8-43
Implementation of Read Consistency 8-44
Locking 8-45
Implicit Locking 8-46
Summary 8-47
Practice 8 Overview 8-48
Read Consistency Example 8-52

9 Creating and Managing Tables
Objectives 9-2
Database Objects 9-3
Naming Rules 9-4
The CREATE TABLE Statement 9-5
Referencing Another User’s Tables 9-6
The DEFAULT Option 9-7
Creating Tables 9-8
Tables in the Oracle Database 9-9
Querying the Data Dictionary 9-10
Data Types 9-11
DateTime Data Types 9-13
TIMESTAMP WITH TIME ZONE Data Type 9-15
TIMESTAMP WITH LOCAL TIME Data Type 9-16

ix

INTERVAL YEAR TO MONTH Data Type 9-17
Creating a Table by Using a Subquery Syntax 9 -18
Creating a Table by Using a Subquery 9-19
The ALTER TABLE Statement 9-20
Adding a Column 9-22
Modifying a Column 9-24
Dropping a Column 9-25
The SET UNUSED Option 9-26
Dropping a Table 9-27
Changing the Name of an Object 9-28
Truncating a Table 9-29
Adding Comments to a Table 9-30
Summary 9-31
Practice 9 Overview 9-32

10 Including Constraints
Objectives 10-2
What are Constraints? 10-3
Constraint Guidelines 10-4
Defining Constraints 10-5
The NOT NULL Constraint 10-7
The UNIQUE Constraint 10-9
The PRIMARY KEY Constraint 10-11
The FOREIGN KEY Constraint 10-13
FOREIGN KEY Constraint Keywords 10-15
The CHECK Constraint 10-16
Adding a Constraint Syntax 10-17
Adding a Constraint 10-18
Dropping a Constraint 10-19
Disabling Constraints 10-20
Enabling Constraints 10-21
Cascading Constraints 10-22
Viewing Constraints 10-24
Viewing the Columns Associated with Constraints 10-25
Summary 10-26
Practice 10 Overview 10-27

x

11 Creating Views
Objectives 11-2
Database Objects 11-3
What is a View? 11-4
Why use Views? 11-5
Simple Views and Complex Views 11-6
Creating a View 11-7
Retrieving Data from a View 11-10
Querying a View 11-11
Modifying a View 11-12
Creating a Complex View 11-13
Rules for Performing DML Operations on a View 11-14
Using the WITH CHECK OPTION Clause 11-17
Denying DML Operations 11-18
Removing a View 11-20
Inline Views 11-21
Top-N Analysis 11-22
Performing Top-N Analysis 11-23
Example of Top-N Analysis 11-24
Summary 11-25
Practice 11 Overview 11-26

12 Other Database Objects
Objectives 12-2
Database Objects 12-3
What is a Sequence? 12-4
The CREATE SEQUENCE Statement Syntax 12-5
Creating a Sequence 12-6
Confirming Sequences 12-7
NEXTVAL and CURRVAL Pseudocolumns 12-8
Using a Sequence 12-10
Modifying a Sequence 12-12
Guidelines for Modifying a Sequence 12-13
Removing a Sequence 12-14
What is an Index? 12-15
How Are Indexes Created? 12-16
Creating an Index 12-17
When to Create an Index 12-18
When Not to Create an Index 12-19
Confirming Indexes 12-20
Function-Based Indexes 12-21

xi

Removing an Index 12-22
Synonyms 12-23
Creating and Removing Synonyms 12-24
Summary 12-25
Practice 12 Overview 12-26

13 Controlling User Access
Objectives 13-2
Controlling User Access 13-3
Privileges 13-4
System Privileges 13-5
Creating Users 13-6
User System Privileges 13-7
Granting System Privileges 13-8
What is a Role? 13-9
Creating and Granting Privileges to a Role 13-10
Changing Your Password 13-11
Object Privileges 13-12
Granting Object Privileges 13-14
Using the WITH GRANT OPTION and PUBLIC Keywords 13-15
Confirming Privileges Granted 13-16
How to Revoke Object Privileges 13-17
Revoking Object Privileges 13-18
Database Links 13-19
Summary 13-21
Practice 13 Overview 13-22

14 SQL Workshop
Workshop Overview 14-2

A Practice Solutions

B Table Descriptions and Data

C Using SQL*Plus

Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

xii

Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access

SQL1 13-2

Lesson Aim
In this lesson, you learn how to control database access to specific objects and add new users with different
levels of access privileges.

13-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Create users
• Create roles to ease setup and maintenance of the

security model
• Use the GRANT and REVOKE statements to grant

and revoke object privileges
• Create and access database links

SQL1 13-3

Controlling User Access
In a multiple-user environment, you want to maintain security of the database access and use. With Oracle
server database security, you can do the following:

• Control database access
• Give access to specific objects in the database
• Confirm given and received privileges with the Oracle data dictionary
• Create synonyms for database objects

Database security can be classified into two categories: system security and data security. System security
covers access and use of the database at the system level, such as the username and password, the disk
space allocated to users, and the system operations that users can perform. Database security covers access
and use of the database objects and the actions that those users can have on the objects.

13-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling User Access

Database
administrator

Users

Username and password
Privileges

SQL1 13-4

Privileges
Privileges are the right to execute particular SQL statements. The database administrator (DBA) is a high-
level user with the ability to grant users access to the database and its objects. The users require system
privileges to gain access to the database and object privileges to manipulate the content of the objects in the
database. Users can also be given the privilege to grant additional privileges to other users or to roles,
which are named groups of related privileges.

Schemas
A schema is a collection of objects, such as tables, views, and sequences. The schema is owned by a
database user and has the same name as that user.
For more information, see Oracle9i Application Developer’s Guide - Fundamentals, “Establishing a
Security Policy” section, and Oracle9i Concepts, “Database Security” topic.

13-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Privileges

• Database security:
– System security
– Data security

• System privileges: Gaining access to the database
• Object privileges: Manipulating the content of the

database objects
• Schemas: Collections of objects, such as tables,

views, and sequences

SQL1 13-5

13-5 Copyright © Oracle Corporation, 2001. All rights reserved.

System Privileges

• More than 100 privileges are available.
• The database administrator has high-level system

privileges for tasks such as:
– Creating new users
– Removing users
– Removing tables
– Backing up tables

System Privileges
More than 100 distinct system privileges are available for users and roles. System privileges typically are
provided by the database administrator.
Typical DBA Privileges

System Privilege Operations Authorized
CREATE USER Grantee can create other Oracle users (a privilege required

for a DBA role).
DROP USER Grantee can drop another user.
DROP ANY TABLE Grantee can drop a table in any schema.
BACKUP ANY TABLE Grantee can back up any table in any schema with the

export utility.
SELECT ANY TABLE Grantee can query tables, views, or snapshots in any

schema.
CREATE ANY TABLE Grantee can create tables in any schema.

SQL1 13-6

13-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Users

The DBA creates users by using the CREATE USER
statement.

CREATE USER scott
IDENTIFIED BY tiger;
User created.

CREATE USER user
IDENTIFIED BY password;

Creating a User
The DBA creates the user by executing the CREATE USER statement. The user does not have any
privileges at this point. The DBA can then grant privileges to that user. These privileges determine what the
user can do at the database level.
The slide gives the abridged syntax for creating a user.
In the syntax:

user is the name of the user to be created

password specifies that the user must log in with this password
For more information, see Oracle9i SQL Reference, “GRANT” and “CREATE USER .”

SQL1 13-7

13-7 Copyright © Oracle Corporation, 2001. All rights reserved.

User System Privileges

• Once a user is created, the DBA can grant specific
system privileges to a user.

• An application developer, for example, may have
the following system privileges:
– CREATE SESSION
– CREATE TABLE
– CREATE SEQUENCE
– CREATE VIEW
– CREATE PROCEDURE

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

Typical User Privileges
Now that the DBA has created a user, the DBA can assign privileges to that user.

In the syntax:
privilege is the system privilege to be granted
user |role|PUBLIC is the name of the user, the name of the role, or PUBLIC designates

that every user is granted the privilege
Note: Current system privileges can be found in the dictionary view SESSION_PRIVS .

System Privilege Operations Authorized
CREATE SESSION Connect to the database
CREATE TABLE Create tables in the user’s schema
CREATE SEQUENCE Create a sequence in the user’s schema
CREATE VIEW Create a view in the user’s schema
CREATE PROCEDURE Create a stored procedure, function, or package in the user’s

schema

SQL1 13-8

Granting System Privileges

The DBA uses the GRANT statement to allocate system privileges to the user. Once the user has been
granted the privileges, the user can immediately use those privileges.
In the example on the slide, user Scott has been assigned the privileges to create sessions, tables, sequences,
and views.

13-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting System Privileges

The DBA can grant a user specific system privileges.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.

SQL1 13-9

13-9 Copyright © Oracle Corporation, 2001. All rights reserved.

What is a Role?

Allocating privileges
without a role

Allocating privileges
with a role

Privileges

Users

Manager

What is a Role?
A role is a named group of related privileges that can be granted to the user. This method makes it easier to
revoke and maintain privileges.
A user can have access to several roles, and several users can be assigned the same role. Roles are typically
created for a database application.

Creating and Assigning a Role
First, the DBA must create the role. Then the DBA can assign privileges to the role and users to the role.
Syntax
CREATE ROLE role;

In the syntax:
role is the name of the role to be created

Now that the role is created, the DBA can use the GRANT statement to assign users to the role as well as
assign privileges to the role.

SQL1 13-10

13-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Granting Privileges to a Role

CREATE ROLE manager;
Role created.

GRANT create table, create view
TO manager;
Grant succeeded.

GRANT manager TO DEHAAN, KOCHHAR;
Grant succeeded.

• Create a role

• Grant privileges to a role

• Grant a role to users

Creating a Role
The example on the slide creates a manager role and then allows managers to create tables and views. It
then grants DeHaan and Kochhar the role of managers. Now DeHaan and Kochhar can create tables and
views.
If users have multiple roles granted to them, they receive all of the privileges associated with all of the
roles.

SQL1 13-11

13-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Your Password

• The DBA creates your user account and initializes
your password.

• You can change your password by using the
ALTER USER statement.

ALTER USER scott
IDENTIFIED BY lion;
User altered.

Changing Your Password
The DBA creates an account and initializes a password for every user. You can change your password by
using the ALTER USER statement.

Syntax
ALTER USER user IDENTIFIED BY password;

In the syntax:
user is the name of the user
password specifies the new password

Although this statement can be used to change your password, there are many other options. You must have
the ALTER USER privilege to change any other option.
For more information, see Oracle9i SQL Reference, “ALTER USER.”

SQL1 13-12

Object Privileges
An object privilege is a privilege or right to perform a particular action on a specific table, view, sequence,
or procedure. Each object has a particular set of grantable privileges. The table on the slide lists the
privileges for various objects. Note that the only privileges that apply to a sequence are SELECT and
ALTER. UPDATE, REFERENCES, and INSERT can be restricted by specifying a subset of updatable
columns. A SELECT privilege can be restricted by creating a view with a subset of columns and granting
the SELECT privilege only on the view. A privilege granted on a synonym is converted to a privilege on
the base table referenced by the synonym.

13-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Object
Privilege Table View Sequence Procedure

ALTER √ √

DELETE √ √

EXECUTE √

INDEX √

INSERT √ √

REFERENCES √ √

SELECT √ √ √

UPDATE √ √

Object Privileges

SQL1 13-13

13-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Object Privileges

• Object privileges vary from object to object.
• An owner has all the privileges on the object.
• An owner can give specific privileges on that

owner’s object.

GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

Granting Object Privileges
Different object privileges are available for different types of schema objects. A user automatically has all
object privileges for schema objects contained in the user’s schema. A user can grant any object privilege
on any schema object that the user owns to any other user or role. If the grant includes WITH GRANT
OPTION, then the grantee can further grant the object privilege to other users; otherwise, the grantee can
use the privilege but cannot grant it to other users.
In the syntax:

object_priv is an object privilege to be granted
ALL specifies all object privileges
columns specifies the column from a table or view on which privileges

are granted
ON object is the object on which the privileges are granted
TO identifies to whom the privilege is granted
PUBLIC grants object privileges to all users
WITH GRANT OPTION allows the grantee to grant the object privileges to other users

and roles

SQL1 13-14

Guidelines
• To grant privileges on an object, the object must be in your own schema, or you must have been granted the

object privileges WITH GRANT OPTION .

• An object owner can grant any object privilege on the object to any other user or role of the database.
• The owner of an object automatically acquires all object privileges on that object.

The first example on the slide grants users Sue and Rich the privilege to query your EMPLOYEES table. The
second example grants UPDATE privileges on specific columns in the DEPARTMENTS table to Scott and to the
manager role.
If Sue or Rich now want to SELECT data from the employees table, the syntax they must use is:

SELECT *
FROM scott.employees;

Alternatively, they can create a synonym for the table and SELECT from the synonym:
CREATE SYNONYM emp FOR scott.employees;
SELECT * FROM emp;

Note: DBAs generally allocate system privileges; any user who owns an object can grant object privileges.

13-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Granting Object Privileges

• Grant query privileges on the EMPLOYEES table.

• Grant privileges to update specific columns to
users and roles.

GRANT select
ON employees
TO sue, rich;
Grant succeeded.

GRANT update (department_name, location_id)
ON departments
TO scott, manager;
Grant succeeded.

SQL1 13-15

The WITH GRANT OPTION Keyword
A privilege that is granted with the WITH GRANT OPTION clause can be passed on to other users and
roles by the grantee. Object privileges granted with the WITH GRANT OPTION clause are revoked when
the grantor’s privilege is revoked.
The example on the slide gives user Scott access to your DEPARTMENTS table with the privileges to query
the table and add rows to the table. The example also allows Scott to give others these privileges.

The PUBLIC Keyword
An owner of a table can grant access to all users by using the PUBLIC keyword.
The second example allows all users on the system to query data from Alice’s DEPARTMENTS table.

13-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH GRANT OPTION and PUBLIC
Keywords

• Give a user authority to pass along privileges.

• Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT select, insert
ON departments
TO scott
WITH GRANT OPTION;
Grant succeeded.

GRANT select
ON alice.departments
TO PUBLIC;
Grant succeeded.

SQL1 13-16

13-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Privileges Granted

Data Dictionary View Description
ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

USER_ROLE_PRIVS Roles accessible by the user

USER_TAB_PRIVS_MADE Object privileges granted on the
user’s objects

USER_TAB_PRIVS_RECD Object privileges granted to the
user

USER_COL_PRIVS_MADE Object privileges granted on the
columns of the user’s objects

USER_COL_PRIVS_RECD Object privileges granted to the
user on specific columns

USER_SYS_PRIVS Lists system privileges granted to
the user

Confirming Granted Privileges
If you attempt to perform an unauthorized operation, such as deleting a row from a table for which you do
not have the DELETE privilege, the Oracle server does not permit the operation to take place.

If you receive the Oracle server error message “table or view does not exist,” you have done either of the
following:

• Named a table or view that does not exist
• Attempted to perform an operation on a table or view for which you do not have the appropriate

privilege
You can access the data dictionary to view the privileges that you have. The chart on the slide describes
various data dictionary views.

SQL1 13-17

Revoking Object Privileges
You can remove privileges granted to other users by using the REVOKE statement. When you use the
REVOKE statement, the privileges that you specify are revoked from the users you name and from any other
users to whom those privileges were granted through the WITH GRANT OPTION clause.

In the syntax:
CASCADE is required to remove any referential integrity constraints made to the
CONSTRAINTS object by means of the REFERENCES privilege

For more information, see Oracle9i SQL Reference, “REVOKE.”

13-17 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Revoke Object Privileges

• You use the REVOKE statement to revoke privileges
granted to other users.

• Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

SQL1 13-18

13-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS
table.

REVOKE select, insert
ON departments
FROM scott;
Revoke succeeded.

Revoking Object Privileges (continued)
The example on the slide revokes SELECT and INSERT privileges given to user Scott on the
DEPARTMENTS table.
Note: If a user is granted a privilege with the WITH GRANT OPTION clause, that user can also grant the
privilege with the WITH GRANT OPTION clause, so that a long chain of grantees is possible, but no
circular grants are permitted. If the owner revokes a privilege from a user who granted the privilege to other
users, the revoking cascades to all privileges granted.
For example, if user A grants SELECT privilege on a table to user B including the WITH GRANT OPTION
clause, user B can grant to user C the SELECT privilege with the WITH GRANT OPTION clause as well,
and user C can then grant to user D the SELECT privilege. If user A revokes privilege from user B, then the
privileges granted to users C and D are also revoked.

SQL1 13-19

13-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

A database link connection allows local users to
access data on a remote database.

Local Remote

SELECT * FROM
emp@HQ_ACME.COM;

HQ_ACME.COM
database

EMP Table

Database Links
A database link is a pointer that defines a one-way communication path from an Oracle database server to
another database server. The link pointer is actually defined as an entry in a data dictionary table. To access
the link, you must be connected to the local database that contains the data dictionary entry.
A database link connection is one-way in the sense that a client connected to local database A can use a link
stored in database A to access information in remote database B, but users connected to database B cannot
use the same link to access data in database A. If local users on database B want to access data on database
A, they must define a link that is stored in the data dictionary of database B.
A database link connection gives local users access to data on a remote database. For this connection to
occur, each database in the distributed system must have a unique global database name. The global
database name uniquely identifies a database server in a distributed system.
The great advantage of database links is that they allow users to access another user's objects in a remote
database so that they are bounded by the privilege set of the object's owner. In other words, a local user can
access a remote database without having to be a user on the remote database.
The example shows a user SCOTT accessing the EMP table on the remote database with the global name
HQ.ACME.COM.

Note: Typically, the DBA is responsible for creating the database link. The dictionary view
USER_DB_LINKS contains information on links to which a user has access.

SQL1 13-20

13-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Links

• Create the database link.

• Write SQL statements that use the database link.

CREATE PUBLIC DATABASE LINK hq.acme.com
USING 'sales';
Database link created.

SELECT *
FROM emp@HQ.ACME.COM;

Using Database Links
The example shown creates a database link. The USING clause identifies the service name of a remote
database.
Once the database link is created, you can write SQL statements against the data in the remote site. If a
synonym is set up, you can write SQL statements using the synony m.
For example:

CREATE PUBLIC SYNONYM HQ_EMP FOR emp@HQ.ACME.COM;

Then write a SQL statement that uses the synonym:
SELECT * FROM HQ_EMP;

You cannot grant privileges on remote objects.

SQL1 13-21

Summary
DBAs establish initial database security for users by assigning privileges to the users.

• The DBA creates users who must have a password. The DBA is also responsible for establishing the
initial system privileges for a user.

• Once the user has created an object, the user can pass along any of the available object privileges to
other users or to all users by using the GRANT statement.

• A DBA can create roles by using the CREATE ROLE statement to pass along a collection of system
or object privileges to multiple users. Roles make granting and revoking privileges easier to maintain.

• Users can change their password by using the ALTER USER statement.
• You can remove privileges from users by using the REVOKE statement.

• With data dictionary views, users can view the privileges granted to them and those that are granted
on their objects.

• With database links, you can access data on remote databases. Privileges cannot be granted on remote
objects.

13-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Statement Action
CREATE USER Creates a user (usually performed by

a DBA)
GRANT Gives other users privileges to

access the your objects
CREATE ROLE Creates a collection of privileges

(usually performed by a DBA)
ALTER USER Changes a user’s password
REVOKE Removes privileges on an object from

users

In this lesson, you should have learned about DCL
statements that control access to the database and
database objects:

SQL1 13-22

13-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 13 Overview

This practice covers the following topics:
• Granting other users privileges to your table
• Modifying another user’s table through the

privileges granted to you
• Creating a synonym
• Querying the data dictionary views related to

privileges

Practice 13 Overview
Team up with other students for this exercise about controlling access to database objects.

SQL1 13-23

Practice 13

1. What privilege should a user be given to log on to the Oracle Server? Is this a system or an object
privilege?

2. What privilege should a user be given to create tables?

3. If you create a table, who can pass along privileges to other users on your table?

4. You are the DBA. You are creating many users who require the same system privileges.

What should you use to make your job easier?

5. What command do you use to change your password?

6. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his

or her DEPARTMENTS table.
7. Query all the rows in your DEPARTMENTS table.

8. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department
number 500. Team 2 should add Human Resources department number 510. Query the other team’s
table.

9. Create a synonym for the other team’s DEPARTMENTS table.

SQL1 13-24

Practice 13 (continued)

10. Query all the rows in the other team’s DEPARTMENTS table by using your synonym.

Team 1 SELECT statement results:

Team 2 SELECT statement results:

SQL1 13-25

Practice 13 (continued)

11. Query the USER_TABLES data dictionary to see information about the tables that you own.

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you can
access. Exclude tables that you own.
Note: Your list may not exactly match the list shown below.

13. Revoke the SELECT privilege on your table from the other team.

owner

SQL1 13-26

Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Workshop

SQL1 14-2

14-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Workshop Overview

This workshop covers:
• Creating tables and sequences
• Modifying data in the tables
• Modifying table definitions
• Creating views
• Writing scripts containing SQL and iSQL*Plus

commands
• Generating a simple report

Workshop Overview
In this workshop you build a set of database tables for a video application. After you create the tables, you
insert, update, and delete records in a video store database and generate a report. The database contains
only the essential tables.
Note: If you want to build the tables, you can execute the commands in the buildtab.sql script in
iSQL*Plus. If you want to drop the tables, you can execute the commands in dropvid.sql script in
iSQL*Plus. Then you can execute the commands in buildvid.sql script in iSQL*Plus to create and
populate the tables. If you use the buildvid.sql script to build and populate the tables, start with step
6b.

SQL1 14-3

Video Application Entity Relationship Diagram

TITLE
#* id

* title
* description

o rating
o category
o release date

TITLE_COPY
#* id

* status

RENTAL
#* book date
o act ret date
o exp ret date

MEMBER
#* id

* last name
o first name
o address
o city
o phone
* join date

RESERVATION
#* res date

for

the subject
of

available as

a copy

the subject of

made against

responsible
for

created
for

responsible
for

set up for

SQL1 14-4

Practice 14

1. Create the tables based on the following table instance charts. Choose the appropriate data types and
be sure to add integrity constraints.
a. Table name: MEMBER

b. Table name: TITLE

Column_
Name

MEMBER_
ID

LAST_
NAME

FIRST_NAM
E

ADDRESS CITY PHONE JOIN
_
DATE

Key
Type

PK

Null/
Unique

NN,U NN NN

Default
Value

 System
Date

Data
Type

NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE

Length 10 25 25 100 30 15

Column_
Name

TITLE_ID TITLE DESCRIPTION RATING CATEGORY RELEASE_
DATE

Key
Type

PK

Null/
Unique

NN,U NN NN

Check G, PG, R,
NC17, NR

DRAMA,
COMEDY,
ACTION,
CHILD,
SCIFI,
DOCUMEN
TARY

Data Type NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE

Length 10 60 400 4 20

SQL1 14-5

Practice 14 (continued)

c. Table name: TITLE_COPY

d. Table name: RENTAL

Column
Name

COPY_ID TITLE_ID STATUS

Key
Type

PK PK,FK

Null/
Unique

NN,U NN,U NN

Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED

FK Ref
Table

 TITLE

FK Ref
Col

 TITLE_ID

Data
Type

NUMBER NUMBER VARCHAR2

Length 10 10 15

Column
Name

BOOK_
DATE

MEMBER_
ID

COPY_
ID

ACT_RET_
DATE

EXP_RET_
DATE

TITLE_
ID

Key
Type

PK PK,FK1 PK,FK2 PK,FK2

Default
Value

System
Date

 System Date
+ 2 days

FK Ref
Table

 MEMBER TITLE_
COPY

 TITLE_
COPY

FK Ref
Col

 MEMBER_I
D

COPY_
ID

 TITLE_ID

Data
Type

DATE NUMBER NUMBER DATE DATE NUMBER

Length 10 10 10

SQL1 14-6

Practice 14 (continued)

e. Table name: RESERVATION

2. Verify that the tables and constraints were created properly by checking the data dictionary.

Column
Name

RES_
DATE

MEMBER_
ID

TITLE_
ID

Key
Type

PK PK,FK1 PK,FK2

Null/
Unique

NN,U NN,U NN

FK Ref
Table

 MEMBER TITLE

FK Ref
Column

 MEMBER_ID TITLE_ID

Data Type DATE NUMBER NUMBER

Length 10 10

18 rows selected.

SQL1 14-7

Practice 14 (continued)

3. Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.
a. Member number for the MEMBER table: Start with 101; do not allow caching of the

values. Name the sequence MEMBER_ID_SEQ.
b. Title number for the TITLE table: Start with 92; no caching. Name the sequence

TITLE_ID_SEQ.

c. Verify the existence of the sequences in the data dictionary.

4. Add data to the tables. Create a script for each set of data to add.
a. Add movie titles to the TITLE table. Write a script to enter the movie information.

Save the statements in a script named lab14_4a.sql. Use the sequences to uniquely
identify each title. Enter the release dates in the DD-MON-YYYY format. Remember
that single quotation marks in a character field must be specially handled. Verify your
additions.

SQL1 14-8

Practice 14 (continued)

Title Description Rating Category Release_date

Willie and
Christmas
Too

All of Willie’s friends make
a Christmas list for Santa, but
Willie has yet to add his own
wish list.

G CHILD 05-OCT-1995

Alien Again Yet another installation of
science fiction history. Can
the heroine save the planet
from the alien life form?

R SCIFI 19-MAY-1995

The Glob A meteor crashes near a
small American town and
unleashes carnivorous goo in
this classic.

NR SCIFI 12-AUG-1995

My Day Off With a little luck and a lot of
ingenuity, a teenager skips
school for a day in New
York.

PG COMEDY 12-JUL-1995

Miracles on
Ice

A six-year-old has doubts
about Santa Claus, but she
discovers that miracles really
do exist.

PG DRAMA 12-SEP-1995

Soda Gang After discovering a cache of
drugs, a young couple find
themselves pitted against a
vicious gang.

NR ACTION 01-JUN-1995

SQL1 14-9

Practice 14 (continued)

b. Add data to the MEMBER table. Place the insert statements in a script named
lab14_4b.sql. Execute commands in the script. Be sure to use the sequence to add the
member numbers.

First_
Name

Last_Name

Address

City

Phone

Join_Date

Carmen Velasquez 283 King
Street

Seattle 206-899-6666 08-MAR-1990

LaDoris Ngao 5 Modrany Bratislava 586-355-8882 08-MAR-1990

Midori Nagayama 68 Via
Centrale

Sao Paolo 254-852-5764 17-JUN-1991

Mark Quick-to-
See

6921 King
Way

Lagos 63-559-7777 07-APR-1990

Audry Ropeburn 86 Chu Street Hong
Kong

41-559-87 18-JAN-1991

Molly Urguhart 3035 Laurier Quebec 418-542-9988 18-JAN-1991

SQL1 14-10

Practice 14 (continued)
c. Add the following movie copies in the TITLE_COPY table:

Note: Have the TITLE_ID numbers available for this exercise.

d. Add the following rentals to the RENTAL table:
Note: Title number may be different depending on sequence number.

Title Copy_Id Status
Willie and Christmas Too 1 AVAILABLE
Alien Again 1 AVAILABLE
 2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
 2 AVAILABLE
 3 RENTED
Miracles on Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

Title_
Id

Copy_
Id

Member_
Id

Book_date

Exp_Ret_Date

Act_Ret_Date

92 1 101 3 days ago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now
95 3 102 2 days ago Today
97 1 106 4 days ago 2 days ago 2 days ago

SQL1 14-11

Practice 14 (continued)
5. Create a view named TITLE_AVAIL to show the movie titles and the availability of

each copy and its expected return date if rented. Query all rows from the view. Order the results by
title.
Note: Your results may be different.

6. Make changes to data in the tables.
a. Add a new title. The movie is “Interstellar Wars,” which is rated PG and classified as a

science fiction movie. The release date is 07-JUL-77. The description is “Futuristic interstellar
action movie. Can the rebels save the humans from the evil empire?” Be sure to add a
title copy record for two copies.

b. Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent “Soda
Gang.”

SQL1 14-12

Practice 14 (continued)
c. Customer Carmen Velasquez rents the movie “Interstellar Wars,” copy 1. Remove her

reservation for the movie. Record the information about the rental. Allow the default
value for the expected return date to be used. Verify that the rental was recorded by
using the view you created.
Note: Your results may be different.

7. Make a modification to one of the tables.
a. Add a PRICE column to the TITLE table to record the purchase price of the video.

The column should have a total length of eight digits and two decimal places. Verify
your modifications.

SQL1 14-13

Practice 14 (continued)
b. Create a script named lab14_7b.sql that contains update statements that update

each video with a price according to the following list. Run the commands in the
script.
Note: Have the TITLE_ID numbers available for this exercise.

c. Make sure that in the future all titles contain a price value. Verify the constraint.

8. Create a report titled Customer History Report. This report contains each customer’s
history of renting videos. Be sure to include the customer name, movie rented, dates of the rental,
and duration of rentals. Total the number of rentals for all customers for the reporting period. Save
the commands that generate the report in a script file named lab14_8.sql.

Note: Your results may be different.

Title Price
Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracles on Ice 30
Soda Gang 35
Interstellar Wars 29

SQL1 14-14

Practice Solutions

SQL1 A-2

Practice 1 Solutions
1. Initiate an iSQL*Plus session using the user ID and password provided by the instructor.
2. iSQL*Plus commands access the database.

False
3. The following SELECT statement executes successfully:

True

SELECT last_name, job_id, salary AS Sal
FROM employees;

4. The following SELECT statement executes successfully:
True

SELECT *
FROM job_grades;

5. There are four coding errors in this statement. Can you identify them?

SELECT employee_id, last_name
sal x 12 ANNUAL SALARY
FROM employees;

– The EMPLOYEES table does not contain a column called sal. The column is called
SALARY.

– The multiplication operator is *, not x, as shown in line 2.
– The ANNUAL SALARY alias cannot include spaces. The alias should read

ANNUAL_SALARY or be enclosed in double quotation marks.
– A comma is missing after the column, LAST_NAME.

6. Show the structure of the DEPARTMENTS table. Select all data from the DEPARTMENTS table.

DESCRIBE departments

SELECT *
FROM departments;

7. Show the structure of the EMPLOYEES table. Create a query to display the last name, job code,
hire date, and employee number for each employee, with employee number appearing first. Provide
an alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file named
lab1_7.sql.

DESCRIBE employees

SELECT employee_id, last_name, job_id, hire_date StartDate
FROM employees;

SQL1 A-3

Practice 1 Solutions (continued)
8. Run your query in the file lab1_7.sql.

SELECT employee_id, last_name, job_id, hire_date
FROM employees;

9. Create a query to display unique job codes from the EMPLOYEES table.

SELECT DISTINCT job_id
FROM employees;

If you have time, complete the following exercises:
10. Copy the statement from lab1_7.sql into the iSQL*Plus Edit window. Name the column

headings Emp #, Employee, Job, and Hire Date, respectively. Run your query again.

SELECT employee_id "Emp #", last_name "Employee",
job_id "Job", hire_date "Hire Date"

FROM employees;

11. Display the last name concatenated with the job ID, separated by a comma and space, and name the
column Employee and Title.

SELECT last_name||', '||job_id "Employee and Title"
FROM employees;

If you want an extra challenge, complete the following exercise:
12. Create a query to display all the data from the EMPLOYEES table. Separate each column by a

comma. Name the column THE_OUTPUT.

SELECT employee_id || ',' || first_name || ',' || last_name
|| ',' || email || ',' || phone_number || ','|| job_id
|| ',' || manager_id || ',' || hire_date || ',' ||
salary || ',' || commission_pct || ',' || department_id
THE_OUTPUT

FROM employees;

SQL1 A-4

Practice 2 Solutions
1. Create a query to display the last name and salary of employees earning more than $12,000.

Place your SQL statement in a text file named lab2_1.sql. Run your query.

SELECT last_name, salary
FROM employees
WHERE salary > 12000;

2. Create a query to display the employee last name and department number for employee number
176.

SELECT last_name, department_id
FROM employees
WHERE employee_id = 176;

3. Modify lab2_1.sql to display the last name and salary for all employees whose salary is not in
the range of $5,000 and $12,000. Place your SQL statement in a text file named lab2_3.sql.

SELECT last_name, salary
FROM employees
WHERE salary NOT BETWEEN 5000 AND 12000;

4. Display the employee last name, job ID, and start date of employees hired between February 20,
1998, and May 1, 1998. Order the query in ascending order by start date.

SELECT last_name, job_id, hire_date
FROM employees
WHERE hire_date BETWEEN '20-Feb-1998' AND '01-May-1998'
ORDER BY hire_date;

SQL1 A-5

Practice 2 Solutions (continued)
5. Display the last name and department number of all employees in departments 20 and 50 in

alphabetical order by name.

SELECT last_name, department_id
FROM employees
WHERE department_id IN (20, 50)
ORDER BY last_name;

6. Modify lab2_3.sql to list the last name and salary of employees who earn between $5,000 and
$12,000, and are in department 20 or 50. Label the columns Employee and Monthly Salary,
respectively. Resave lab2_3.sql as lab2_6.sql. Run the statement in lab2_6.sql.

SELECT last_name "Employee", salary "Monthly Salary"
FROM employees
WHERE salary BETWEEN 5000 AND 12000
AND department_id IN (20, 50);

7. Display the last name and hire date of every employee who was hired in 1994.

SELECT last_name, hire_date
FROM employees
WHERE hire_date LIKE '%94';

8. Display the last name and job title of all employees who do not have a manager.

SELECT last_name, job_id
FROM employees
WHERE manager_id IS NULL;

9. Display the last name, salary, and commission for all employees who earn commissions. Sort
data in descending order of salary and commissions.

SELECT last_name, salary, commission_pct
FROM employees
WHERE commission_pct IS NOT NULL
ORDER BY salary DESC, commission_pct DESC;

SQL1 A-6

Practice 2 Solutions (continued)
If you have time, complete the following exercises.

10. Display the last names of all employees where the third letter of the name is an a.

SELECT last_name
FROM employees
WHERE last_name LIKE '__a%';

11. Display the last name of all employees who have an a and an e in their last name.

SELECT last_name
FROM employees
WHERE last_name LIKE '%a%'

AND last_name LIKE '%e%';

If you want an extra challenge, complete the following exercises:
12. Display the last name, job, and salary for all employees whose job is sales representative or stock

clerk and whose salary is not equal to $2,500, $3,500, or $7,000.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id IN ('SA_REP', 'ST_CLERK')

AND salary NOT IN (2500, 3500, 7000);

13. Modify lab2_6.sql to display the last name, salary, and commission for all employees whose
commission amount is 20%. Resave lab2_6.sql as lab2_13.sql. Rerun the statement in
lab2_13.sql.

.

SELECT last_name "Employee", salary "Monthly Salary",
commission_pct

FROM employees
WHERE commission_pct = .20;

SQL1 A-7

Practice 3 Solutions
1. Write a query to display the current date. Label the column Date.

SELECT sysdate "Date"
FROM dual;

2. For each employee, display the employee number, last_name, salary, and salary increased by 15%
and expressed as a whole number. Label the column New Salary. Place your SQL statement in a
text file named lab3_2.sql.

SELECT employee_id, last_name, salary,
ROUND(salary * 1.15, 0) "New Salary"

FROM employees;

3. Run your query in the file lab3_2.sql.

SELECT employee_id, last_name, salary,
ROUND(salary * 1.15, 0) "New Salary"

FROM employees;

4. Modify your query lab3_2.sql to add a column that subtracts the old salary from
the new salary. Label the column Increase. Save the contents of the file as lab3_4.sql. Run
the revised query.

SELECT employee_id, last_name, salary,
ROUND(salary * 1.15, 0) "New Salary",
ROUND(salary * 1.15, 0) - salary "Increase"

FROM employees;

5. Write a query that displays the employee’s last names with the f irst letter capitalized and all other
letters lowercase and the length of the name for all employees whose name starts with J, A, or M.
Give each column an appropriate label. Sort the results by the employees’ last names.

SELECT INITCAP(last_name) "Name",
LENGTH(last_name) "Length"

FROM employees
WHERE last_name LIKE 'J%'
OR last_name LIKE 'M%'
OR last_name LIKE 'A%'
ORDER BY last_name;

SQL1 A-8

Practice 3 Solutions (continued)
6. For each employee, display the employee’s last name, and calculate the number of months between

today and the date the employee was hired. Label the column MONTHS_WORKED. Order your results
by the number of months employed. Round the number of months up to the closest whole number.
Note: Your results will differ.

SELECT last_name, ROUND(MONTHS_BETWEEN
(SYSDATE, hire_date)) MONTHS_WORKED

FROM employees
ORDER BY MONTHS_BETWEEN(SYSDATE, hire_date);

7. Write a query that produces the following for each employee:
<employee last name> earns <salary> monthly but wants <3 times
salary>. Label the column Dream Salaries.
SELECT last_name || ' earns '

|| TO_CHAR(salary, 'fm$99,999.00')
|| ' monthly but wants '
|| TO_CHAR(salary * 3, 'fm$99,999.00')
|| '.' "Dream Salaries"

FROM employees;

If you have time, complete the following exercises:
8. Create a query to display the last name and salary for all employees. Format the salary to be 15

characters long, left-padded with $. Label the column SALARY.
SELECT last_name,

LPAD(salary, 15, '$') SALARY
FROM employees;

9. Display each employee’s last name, hire date, and salary review date, which is the first Monday after
six months of service. Label the column REVIEW. Format the dates to appear in the format similar to
“Monday, the Thirty-First of July, 2000.”

SELECT last_name, hire_date,
TO_CHAR(NEXT_DAY(ADD_MONTHS(hire_date, 6),'MONDAY'),

'fmDay, "the" Ddspth "of" Month, YYYY') REVIEW
FROM employees;

10. Display the last name, hire date, and day of the week on which the employee started. Label
the column DAY. Order the results by the day of the week starting with Monday.

SELECT last_name, hire_date,
TO_CHAR(hire_date, 'DAY') DAY

FROM employees
ORDER BY TO_CHAR(hire_date - 1, 'd');

SQL1 A-9

Practice 3 Solutions (continued)

If you want an extra challenge, complete the following exercises:
11. Create a query that displays the employees’ last names and commission amounts. If an employee

does not earn commission, put “No Commission.” Label the column COMM.
SELECT last_name,

NVL(TO_CHAR(commission_pct), 'No Commission') COMM
FROM employees;

12. Create a query that displays the employees’ last names and indicates the amounts of their annual
salaries with asterisks. Each asterisk signifies a thousand doll ars. Sort the data in descending order
of salary. Label the column EMPLOYEES_AND_THEIR_SALARIES .

SELECT rpad(last_name, 8)||' '|| rpad(' ', salary/1000+1, '*')
EMPLOYEES_AND_THEIR_SALARIES

FROM employees
ORDER BY salary DESC;

13. Using the DECODE function, write a query that displays the grade of all employees based on the
value of the column JOB_ID, as per the following data:
JOB GRADE
AD_PRES A
ST_MAN B
IT_PROG C
SA_REP D
ST_CLERK E
None of the above 0

SELECT job_id, decode (job_id,
'ST_CLERK', 'E',
'SA_REP', 'D',
'IT_PROG', 'C',
'ST_MAN', 'B',
'AD_PRES', 'A',

'0')GRADE
FROM employees;

SQL1 A-10

Practice 3 Solutions (continued)
14. Rewrite the statement in the preceding question using the CASE syntax.

SELECT job_id, CASE job_id
WHEN 'ST_CLERK' THEN 'E'
WHEN 'SA_REP' THEN 'D'
WHEN 'IT_PROG' THEN 'C'
WHEN 'ST_MAN' THEN 'B'
WHEN 'AD_PRES' THEN 'A'
ELSE '0' END GRADE

FROM employees;

SQL1 A-11

Practice 4 Solutions
1. Write a query to display the last name, department number, and department name for all

employees.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id;

2. Create a unique listing of all jobs that are in department 80. Include the location of department in
the output.
SELECT DISTINCT job_id, location_id
FROM employees, departments
WHERE employees.department_id = departments.department_id
AND employees.department_id = 80;

3. Write a query to display the employee last name, department name, location ID, and city of all
employees who earn a commission.
SELECT e.last_name, d.department_name, d.location_id, l.city
FROM employees e, departments d, locations l
WHERE e.department_id = d.department_id
AND
d.location_id = l.location_id
AND e.commission_pct IS NOT NULL;

4. Display the employee last name and department name for all employees who have an a (lowercase)
in their last names. Place your SQL statement in a text file named lab4_4.sql.

SELECT last_name, department_name
FROM employees, departments
WHERE employees.department_id = departments.department_id
AND last_name LIKE '%a%';

SQL1 A-12

Practice 4 Solutions (continued)

5. Write a query to display the last name, job, department number, and department name for all
employees who work in Toronto.
SELECT e.last_name, e.job_id, e.department_id,

d.department_name
FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
JOIN locations l
ON (d.location_id = l.location_id)
WHERE LOWER(l.city) = 'toronto';

6. Display the employee last name and employee number along with their manager’s last name and
manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.
Place your SQL statement in a text file named lab4_6.sql.

SELECT w.last_name "Employee", w.employee_id "EMP#",
m.last_name "Manager", m.employee_id "Mgr#"

FROM employees w join employees m
ON (w.manager_id = m.employee_id);

SQL1 A-13

Practice 4 Solutions (continued)
7. Modify lab4_6.sql to display all employees including King, who has no manager.

Place your SQL statement in a text file named lab4_7.sql. Run the query in lab4_7.sql
SELECT w.last_name "Employee", w.employee_id "EMP#",

m.last_name "Manager", m.employee_id "Mgr#"
FROM employees w
LEFT OUTER JOIN employees m
ON (w.manager_id = m.employee_id);

If you have time, complete the following exercises.
8. Create a query that displays employee last names, department numbers, and all the

employees who work in the same department as a given employee. Give each column an appropriate
label.

SELECT e.department_id department, e.last_name employee,
c.last_name colleague

FROM employees e JOIN employees c
ON (e.department_id = c.department_id)
WHERE e.employee_id <> c.employee_id
ORDER BY e.department_id, e.last_name, c.last_name;

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job,
department name, salary, and grade for all employees.
DESC JOB_GRADES
SELECT e.last_name, e.job_id, d.department_name,

e.salary, j.grade_level
FROM employees e, departments d, job_grades j
WHERE e.department_id = d.department_id
AND e.salary BETWEEN j.lowest_sal AND j.highest_sal;

-- OR
SELECT e.last_name, e.job_id, d.department_name,

e.salary, j.grade_level
FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
JOIN job_grades j
ON (e.salary BETWEEN j.lowest_sal AND j.highest_sal);

SQL1 A-14

Practice 4 Solutions (continued)
If you want an extra challenge, complete the following exercises:

10. Create a query to display the name and hire date of any employee hired after employee Davies.
SELECT e.last_name, e.hire_date
FROM employees e, employees davies
WHERE davies.last_name = 'Davies'
AND davies.hire_date < e.hire_date
-- OR
SELECT e.last_name, e.hire_date
FROM employees e JOIN employees davies
ON (davies.last_name = 'Davies')
WHERE davies.hire_date < e.hire_date;

11. Display the names and hire dates for all employees who were hired before their managers, along with
their manager’s names and hire dates. Label the columns Employee, Emp
Hired, Manager, and Mgr Hired, respectively.

SELECT w.last_name, w.hire_date, m.last_name, m.hire_date
FROM employees w, employees m
WHERE w.manager_id = m.employee_id
AND w.hire_date < m.hire_date;
-- OR
SELECT w.last_name, w.hire_date, m.last_name, m.hire_date
FROM employees w JOIN employees m
ON (w.manager_id = m.employee_id)
WHERE w.hire_date < m.hire_date;

SQL1 A-15

Practice 5 Solutions
Determine the validity of the following three statements. Circle either True or False.

1. Group functions work across many rows to produce one result.
True

2. Group functions include nulls in calculations.
False. Group functions ignore null values. If you want to include null values, use the NVL
function.

3. The WHERE clause restricts rows prior to inclusion in a group calculation.
True

4. Display the highest, lowest, sum, and average salary of all employees. Label the columns
Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole
number. Place your SQL statement in a text file named lab5_6.sql.

SELECT ROUND(MAX(salary),0) "Maximum",
ROUND(MIN(salary),0) "Minimum",
ROUND(SUM(salary),0) "Sum",
ROUND(AVG(salary),0) "Average"

FROM employees;

5. Modify the query in lab5_4.sql to display the minimum, maximum, sum, and average salary for
each job type. Resave lab5_6.sql to lab5_4.sql. Run the statement in lab5_5.sql.

SELECT job_id, ROUND(MAX(salary),0) "Maximum",
ROUND(MIN(salary),0) "Minimum",
ROUND(SUM(salary),0) "Sum",
ROUND(AVG(salary),0) "Average"

FROM employees
GROUP BY job_id;

SQL1 A-16

Practice 5 Solutions (continued)
6. Write a query to display the number of people with the same job.

SELECT job_id, COUNT(*)
FROM employees
GROUP BY job_id;

7. Determine the number of managers without listing them. Label the column Number of
Managers. Hint: Use the MANAGER_ID column to determine the number of managers.

SELECT COUNT(DISTINCT manager_id) "Number of Managers"
FROM employees;

8. Write a query that displays the difference between the highest and lowest salaries. Label the column
DIFFERENCE.

SELECT MAX(salary) - MIN(salary) DIFFERENCE
FROM employees;

If you have time, complete the following exercises.
9. Display the manager number and the salary of the lowest paid employee for that manager.

Exclude anyone whose manager is not known. Exclude any groups where the minimum
salary is $6,000 or less. Sort the output in descending order of salary.

SELECT manager_id, MIN(salary)
FROM employees
WHERE manager_id IS NOT NULL
GROUP BY manager_id
HAVING MIN(salary) > 6000
ORDER BY MIN(salary) DESC;

10. Write a query to display each department’s name, location, number of employees, and the average
salary for all employees in that department. Label the columns Name, Location, Number of
People, and Salary, respectively. Round the average salary to two decimal places.

SELECT d.department_name "Name", d.location_id "Location",
COUNT(*) "Number of People",
ROUND(AVG(salary),2) "Salary"

FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_name, d.location_id;

SQL1 A-17

Practice 5 Solutions (continued)
If you want an extra challenge, complete the following exercises:

11. Create a query that will display the total number of employees and, of that total, the number of
employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

SELECT COUNT(*) total,
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1995,1,0))"1995",
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1996,1,0))"1996",
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1997,1,0))"1997",
SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1998,1,0))"1998"

FROM employees;

12. Create a matrix query to display the job, the salary for that job based on department number, and the
total salary for that job, for departments 20, 50, 80, and 90, giving each column an appropriate
heading.

SELECT job_id "Job",
SUM(DECODE(department_id , 20, salary)) "Dept 20",
SUM(DECODE(department_id , 50, salary)) "Dept 50",
SUM(DECODE(department_id , 80, salary)) "Dept 80",
SUM(DECODE(department_id , 90, salary)) "Dept 90",
SUM(salary) "Total"

FROM employees
GROUP BY job_id;

SQL1 A-18

Practice 6 Solutions
1. Write a query to display the last name and hire date of any employee in the same

department as Zlotkey. Exclude Zlotkey.

SELECT last_name, hire_date
FROM employees
WHERE department_id = (SELECT department_id

FROM employees
WHERE last_name = 'Zlotkey')

AND last_nae <> 'Zlotkey';

2. Create a query to display the employee numbers and last names of all employees who earn more than
the average salary. Sort the results in descending order of salary.

SELECT employee_id, last_name
FROM employees
WHERE salary > (SELECT AVG(salary)

FROM employees);

3. Write a query that displays the employee numbers and last names of all employees who work in a
department with any employee whose last name contains a u. Place your SQL statement in a text
file named lab6_3.sql. Run your query.

SELECT employee_id, last_name
FROM employees
WHERE department_id IN (SELECT department_id

FROM employees
WHERE last_name like '%u%');

4. Display the last name, department number, and job ID of all employees whose department location ID
is 1700.

SELECT last_name, department_id, job_id
FROM employees
WHERE department_id IN (SELECT department_id

FROM departments
WHERE location_id = 1700);

SQL1 A-19

Practice 6 Solutions (continued)
5. Display the last name and salary of every employee who reports to King.

SELECT last_name, salary
FROM employees
WHERE manager_id = (SELECT employee_id

FROM employees
WHERE last_name = 'King');

6. Display the department number, last name, and job ID for every employee in the Executive
department.

SELECT department_id, last_name, job_id
FROM employees
WHERE department_id IN (SELECT department_id

FROM departments
WHERE department_name = 'Executive');

If you have time, complete the following exercises:
7. Modify the query in lab6_3.sql to display the employee numbers, last names, and salaries of all

employees who earn more than the average salary and who work in a department with any employee
with a u in their name. Resave lab6_3.sql to lab6_7.sql. Run the statement in
lab6_7.sql.

SELECT employee_id, last_name, salary
FROM employees
WHERE department_id IN (SELECT department_id

FROM employees
WHERE last_name like '%u%')

AND salary > (SELECT AVG(salary)
FROM employees);

SQL1 A-20

Practice 7 Solutions
Determine whether the following statements are true or false:

1. The following statement is correct:
DEFINE & p_val = 100

False
The correct use of DEFINE is DEFINE p_val=100. The & is used within the SQL code.

2. The DEFINE command is a SQL command.

False
The DEFINE command is an iSQL*Plus command.

3. Write a script file to display the employee last name, job, and hire date for all employees who
started between a given range. Concatenate the name and job together, separated by a space
and comma, and label the column Employees. Use the DEFINE command to provide the two
ranges. Use the format MM/DD/YYYY. Save the script file as lab7_3.sql.

SET ECHO OFF
SET VERIFY OFF
DEFINE low_date = 01/01/1998
DEFINE high_date = 01/01/1999
SELECT last_name ||', '|| job_id EMPLOYEES, hire_date
FROM employees
WHERE hire_date BETWEEN TO_DATE('&low_date', 'MM/DD/YYYY')

AND TO_DATE('&high_date', 'MM/DD/YYYY')
/
UNDEFINE low_date
UNDEFINE high_date
SET VERIFY ON
SET ECHO ON

SQL1 A-21

Practice 7 Solutions (continued)
4. Write a script to display the employee last name, job, and department name for a given location. The

search condition should allow for case-insensitive searches of the department location. Save the
script file as lab7_4.sql.

SET ECHO OFF
SET VERIFY OFF
COLUMN last_name HEADING "EMPLOYEE NAME"
COLUMN department_name HEADING "DEPARTMENT NAME”
SELECT e.last_name, e.job_id, d.department_name
FROM employees e, departments d, locations l
WHERE e.department_id = d.department_id
AND l.location_id = d.location_id
AND l.city = INITCAP('&p_location')
/
COLUMN last_name CLEAR
COLUMN department_name CLEAR
SET VERIFY ON
SET ECHO ON

SQL1 A-22

Practice 7 Solutions (continued)
5. Modify the code in lab7_4.sql to create a report containing the department name, employee last

name, hire date, salary, and each employee’s annual salary for all employees in a given location.
Label the columns DEPARTMENT NAME, EMPLOYEE NAME, START DATE, SALARY, and
ANNUAL SALARY, placing the labels on multiple lines. Resave the script as lab7_5.sql and
execute the commands in the script.

SET ECHO OFF
SET FEEDBACK OFF
SET VERIFY OFF
BREAK ON department_name
COLUMN department_name HEADING "DEPARTMENT|NAME"
COLUMN last_name HEADING "EMPLOYEE|NAME"
COLUMN hire_date HEADING "START|DATE"
COLUMN salary HEADING "SALARY" FORMAT $99,990.00
COLUMN asal HEADING "ANNUAL|SALARY" FORMAT $99,990.00
SELECT d.department_name, e.last_name, e.hire_date,

e.salary, e.salary*12 asal
FROM departments d, employees e, locations l
WHERE e.department_id = d.department_id
AND d.location_id = l.location_id
AND l.city = '&p_location'
ORDER BY d.department_name
/
COLUMN department_name CLEAR
COLUMN last_name CLEAR
COLUMN hire_date CLEAR
COLUMN salary CLEAR
COLUMN asal CLEAR
CLEAR BREAK
SET VERIFY ON
SET FEEDBACK ON
SET ECHO ON

SQL1 A-23

Practice 8 Solutions

Insert data into the MY_EMPLOYEE table.
1. Run the statement in the lab8_1.sql script to build the MY_EMPLOYEE table that will be used for

the lab.

CREATE TABLE my_employee
(id NUMBER(4) CONSTRAINT my_employee_id_nn NOT NULL,
last_name VARCHAR2(25),
first_name VARCHAR2(25),
userid VARCHAR2(8),
salary NUMBER(9,2));

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.
DESCRIBE my_employee

3. Add the first row of data to the MY_EMPLOYEE table from the following sample data. Do not list the
columns in the INSERT clause.

INSERT INTO my_employee
VALUES (1, 'Patel', 'Ralph', 'rpatel', 895);

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding list. This
time, list the columns explicitly in the INSERT clause.
INSERT INTO my_employee (id, last_name, first_name,

userid, salary)
VALUES (2, 'Dancs', 'Betty', 'bdancs', 860);

5. Confirm your addition to the table.
SELECT *
FROM my_employee;

ID LAST_NAME FIRST_NAME USERID SALARY

1 Patel Ralph rpatel 895

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audrey aropebur 1550

SQL1 A-24

Practice 8 Solutions (continued)
6. Write an insert statement in a text file named loademp.sql to load rows into the

MY_EMPLOYEE table. Concatenate the first letter of the first name and the f irst seven characters of
the last name to produce the userid.
SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',

lower(substr('&p_first_name', 1, 1) ||
substr('&p_last_name', 1, 7)), &p_salary);

SET VERIFY ON
SET ECHO ON

7. Populate the table with the next two rows of sample data by running the insert statement in the
script that you created.

SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',

lower(substr('&p_first_name', 1, 1) ||
substr('&p_last_name', 1, 7)), &p_salary);

SET VERIFY ON
SET ECHO ON

8. Confirm your additions to the table.

SELECT *
FROM my_employee;

9. Make the data additions permanent.

COMMIT;

SQL1 A-25

Practice 8 Solutions (continued)
Update and delete data in the MY_EMPLOYEE table.

10. Change the last name of employee 3 to Drexler.

UPDATE my_employee
SET last_name = 'Drexler'
WHERE id = 3;

11. Change the salary to 1000 for all employees with a salary less than 900.

UPDATE my_employee
SET salary = 1000
WHERE salary < 900;

12. Verify your changes to the table.

SELECT last_name, salary
FROM my_employee;

13. Delete Betty Dancs from the MY_EMPLOYEE table.

DELETE
FROM my_employee
WHERE last_name = 'Dancs';

14. Confirm your changes to the table.

SELECT *
FROM my_employee;

15. Commit all pending changes.

COMMIT;

Control data transaction to the MY_EMPLOYEE table.

16. Populate the table with the last row of sample data by modifying the statements in the script that you
created in step 6. Run the statements in the script.

SET ECHO OFF
SET VERIFY OFF
INSERT INTO my_employee
VALUES (&p_id, '&p_last_name', '&p_first_name',

lower(substr('&p_first_name', 1, 1) ||
substr('&p_last_name', 1, 7)), &p_salary);

SET VERIFY ON
SET ECHO ON

SQL1 A-26

Practice 8 Solutions (continued)
17. Confirm your addition to the table.

SELECT *
FROM my_employee;

18. Mark an intermediate point in the processing of the transaction.

SAVEPOINT step_18;

19. Empty the entire table.

DELETE
FROM my_employee;

20. Confirm that the table is empty.

SELECT *
FROM my_employee;

21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.

ROLLBACK TO step_18;

22. Confirm that the new row is still intact.

SELECT *
FROM my_employee;

23. Make the data addition permanent.

COMMIT;

SQL1 A-27

Practice 9 Solutions

1. Create the DEPT table based on the following table instance chart. Place the syntax in a script called
lab9_1.sql, then execute the statement in the script to create the table. Confirm that the table is
created.

CREATE TABLE dept
(id NUMBER(7),
name VARCHAR2(25));

DESCRIBE dept
2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that

you need.

INSERT INTO dept
SELECT department_id, department_name
FROM departments;

3. Create the EMP table based on the following table instance chart. Place the syntax in a script called
lab9_3.sql, and then execute the statement in the script to create the table. Confirm that the table is
created.

Column Name ID NAME

Key Type

Nulls/Unique

FK Table

FK Column

Data type Number VARCHAR2

Length 7 25

Column Name ID LAST_NAME FIRST_NAME DEPT_ID

Key Type

Nulls/Unique

FK Table

FK Column

Data type Number VARCHAR2 VARCHAR2 Number

Length 7 25 25 7

SQL1 A-28

Practice 9 Solutions (continued)

CREATE TABLE emp
(id NUMBER(7),
last_name VARCHAR2(25),
first_name VARCHAR2(25),
dept_id NUMBER(7));

DESCRIBE emp

4. Modify the EMP table to allow for longer employee last names. Confirm your modification.

ALTER TABLE emp
MODIFY (last_name VARCHAR2(50));

DESCRIBE emp

5. Confirm that both the DEPT and EMP tables are stored in the data dictionary. (Hint:
USER_TABLES)

SELECT table_name
FROM user_tables
WHERE table_name IN ('DEPT', 'EMP');

6. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the
EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name
the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY , and DEPT_ID,
respectively.

CREATE TABLE employees2 AS
SELECT employee_id id, first_name, last_name, salary,

department_id dept_id
FROM employees;

7. Drop the EMP table.

DROP TABLE emp;

8. Rename the EMPLOYEES2 table to EMP.

RENAME employees2 TO emp;

SQL1 A-29

Practice 9 Solutions (continued)
9. Add a comment to the DEPT and EMP table definitions describing the tables. Confirm your additions

in the data dictionary.

COMMENT ON TABLE emp IS 'Employee Information';
COMMENT ON TABLE dept IS 'Department Information';
SELECT *
FROM user_tab_comments
WHERE table_name = 'DEPT'
OR table_name = 'EMP';

10. Drop the FIRST_NAME column from the EMP table. Confirm your modification by checking the
description of the table.

ALTER TABLE emp
DROP COLUMN FIRST_NAME;

DESCRIBE emp

11. In the EMP table, mark the DEPT_ID column in the EMP table as UNUSED. Confirm your
modification by checking the description of the table.

ALTER TABLE emp
SET UNUSED (dept_id);

DESCRIBE emp

12. Drop all the UNUSED columns from the EMP table. Confirm your modification by checking the
description of the table.
ALTER TABLE emp
DROP UNUSED COLUMNS;

DESCRIBE emp

SQL1 A-30

Practice 10 Solutions
1. Add a table-level PRIMARY KEY constraint to the EMP table on the ID column. The constraint

should be named at creation. Name the constraint my_emp_id_pk

ALTER TABLE emp
ADD CONSTRAINT my_emp_id_pk PRIMARY KEY (id);

2. Create a PRIMARY KEY constraint to the DEPT table using the ID column. The constraint should
be named at creation. Name the constraint my_dept_id_pk.

ALTER TABLE dept
ADD CONSTRAINT my_dept_id_pk PRIMARY KEY(id);

3. Add a column DEPT_ID to the EMP table. Add a foreign key reference on the EMP table that
ensures that the employee is not assigned to a nonexistent department. Name the constraint
my_emp_dept_id_fk.

ALTER TABLE emp
ADD (dept_id NUMBER(7));

ALTER TABLE emp
ADD CONSTRAINT my_emp_dept_id_fk
FOREIGN KEY (dept_id) REFERENCES dept(id);

4. Confirm that the constraints were added by querying the USER_CONSTRAINTS view. Note the
types and names of the constraints. Save your statement text in a file called lab10_4.sql.

SELECT constraint_name, constraint_type
FROM user_constraints
WHERE table_name IN ('EMP', 'DEPT');

5. Display the object names and types from the USER_OBJECTS data dictionary view for the EMP
and DEPT tables. Notice that the new tables and a new index were created.

SELECT object_name, object_type
FROM user_objects
WHERE object_name LIKE 'EMP%'
OR object_name LIKE 'DEPT%';

If you have time, complete the following exercise:
6. Modify the EMP table. Add a COMMISSION column of NUMBER data type, precision 2, scale 2.

Add a constraint to the commission column that ensures that a commission value is greater than
zero.
ALTER TABLE EMP
ADD commission NUMBER(2,2)
CONSTRAINT my_emp_comm_ck CHECK (commission >= 0;

SQL1 A-31

Practice 11 Solutions
1. Create a view called EMPLOYEES_VU based on the employee numbers, employee names, and

department numbers from the EMPLOYEES table. Change the heading for the employee name to
EMPLOYEE.
CREATE OR REPLACE VIEW employees_vu AS
SELECT employee_id, last_name employee, department_id
FROM employees;

2. Display the contents of the EMPLOYEES_VU view.
SELECT *
FROM employees_vu;

3. Select the view name and text from the USER_VIEWS data dictionary view.
Note: Another view already exists. The EMP_DETAILS_VIEW was created as part of your schema.
Note: To see more contents of a LONG column, use the iSQL*Plus command SET LONG n, where
n is the value of the number of characters of the LONG column that you want to see.

SET LONG 600
SELECT view_name, text
FROM user_views;

4. Using your EMPLOYEES_VU view, enter a query to display all employee names and department
numbers.
SELECT employee, department_id
FROM employees_vu;

5. Create a view named DEPT50 that contains the employee numbers, employee last names, and
department numbers for all employees in department 50. Label the view columns
EMPNO, EMPLOYEE, and DEPTNO. Do not allow an employee to be reassigned to another
department through the view.
CREATE VIEW dept50 AS
SELECT employee_id empno, last_name employee,

department_id deptno
FROM employees
WHERE department_id = 50
WITH CHECK OPTION CONSTRAINT emp_dept_50;

SQL1 A-32

Practice 11 Solutions (continued)
6. Display the structure and contents of the DEPT50 view.

DESCRIBE dept50
SELECT *
FROM dept50;

7. Attempt to reassign Matos to department 80.
UPDATE dept50
SET deptno = 80
WHERE employee = 'Matos';

If you have time, complete the following exercise:
8. Create a view called SALARY_VU based on the employee last names, department names, salaries,

and salary grades for all employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES
tables. Label the columns Employee, Department, Salary, and Grade, respectively.

CREATE OR REPLACE VIEW salary_vu
AS
SELECT e.last_name "Employee",

d.department_name "Department",
e.salary "Salary",
j.grade_level "Grades"

FROM employees e,
departments d,
job_grades j

WHERE e.department_id = d.department_id
AND e.salary BETWEEN j.lowest_sal and j.highest_sal;

SQL1 A-33

Practice 12 Solutions
1. Create a sequence to be used with the primary key column of the DEPT table. The sequence should

start at 200 and have a maximum value of 1000. Have your sequence increment by ten numbers.
Name the sequence DEPT_ID_SEQ.

CREATE SEQUENCE dept_id_seq
START WITH 200
INCREMENT BY 10
MAXVALUE 1000;

2. Write a query in a script to display the following information about your sequences: sequence name,
maximum value, increment size, and last number. Name the script lab12_2.sql. Run the
statement in your script.
SELECT sequence_name, max_value, increment_by, last_number
FROM user_sequences;

3. Write a script to insert two rows into the DEPT table. Name your script lab12_3.sql. Be sure to
use the sequence that you created for the ID column. Add two departments named Education and
Administration. Confirm your additions. Run the commands in your script.

INSERT INTO dept
VALUES (dept_id_seq.nextval, 'Education');

INSERT INTO dept
VALUES (dept_id_seq.nextval, 'Administration');

4. Create a nonunique index on the foreign key column (DEPT_ID) in the EMP table.

CREATE INDEX emp_dept_id_idx ON emp (dept_id);
5. Display the indexes and uniqueness that exist in the data dictionary for the EMP table. Save the

statement into a script named lab12_5.sql.
SELECT index_name, table_name, uniqueness
FROM user_indexes
WHERE table_name = 'EMP';

SQL1 A-34

Practice 13 Solutions

1. What privilege should a user be given to log on to the Oracle Server? Is this a system or an object
privilege?
The CREATE SESSION system privilege

2. What privilege should a user be given to create tables?
The CREATE TABLE privilege

3. If you create a table, who can pass along privileges to other users on your table?
You can, or anyone you have given those privileges to by using the WITH GRANT
OPTION.

4. You are the DBA. You are creating many users who require the same system privileges.
What should you use to make your job easier?
Create a role containing the system privileges and grant the role to the users

5. What command do you use to change your password?
The ALTER USER statement

6. Grant another user access to your DEPARTMENTS table. Have the user grant you query access to his
or her DEPARTMENTS table.

Team 2 executes the GRANT statement.
GRANT select
ON departments
TO <user1>;
Team 1 executes the GRANT statement.
GRANT select
ON departments
TO <user2>;

WHERE user1 is the name of team 1 and user2 is the name of team 2.

7. Query all the rows in your DEPARTMENTS table.

SELECT *
FROM departments;

SQL1 A-35

Practice 13 Solutions (continued)
8. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department

number 500. Team 2 should add Human Resources department number 510. Query the other team’s
table.

Team 1 executes this INSERT statement.
INSERT INTO departments(department_id, department_name)
VALUES (200, 'Education');
COMMIT;
Team 2 executes this INSERT statement.
INSERT INTO departments(department_id, department_name)
VALUES (210, 'Administration');
COMMIT;

9. Create a synonym for the other team’s DEPARTMENTS table.

Team 1 creates a synonym named team2.
CREATE SYNONYM team2
FOR <user2>.DEPARTMENTS;

Team 2 creates a synonym named team1.
CREATE SYNONYM team1
FOR <user1>. DEPARTMENTS;

10. Query all the rows in the other team’s DEPARTMENTS table by using your synonym.

Team 1 executes this SELECT statement.
SELECT *
FROM team2;

Team 2 executes this SELECT statement.
SELECT *
FROM team1;

SQL1 A-36

Practice 13 Solutions (continued)
11. Query the USER_TABLES data dictionary to see information about the tables that you own.

SELECT table_name
FROM user_tables;

12. Query the ALL_TABLES data dictionary view to see information about all the tables that you
can access. Exclude tables that you own.

SELECT table_name, owner
FROM all_tables
WHERE owner <> <your account>;

13. Revoke the SELECT privilege from the other team.
Team 1 revokes the privilege.
REVOKE select
ON departments
FROM user2;
Team 2 revokes the privilege.
REVOKE select
ON departments
FROM user1;

SQL1 A-37

Practice 14 Solutions

1. Create the tables based on the following table instance charts. Choose the appropriate data types and
be sure to add integrity constraints.
a. Table name: MEMBER

CREATE TABLE member
(member_id NUMBER(10)

CONSTRAINT member_member_id_pk PRIMARY KEY,
last_name VARCHAR2(25)

CONSTRAINT member_last_name_nn NOT NULL,
first_name VARCHAR2(25),
address VARCHAR2(100),
city VARCHAR2(30),
phone VARCHAR2(15),
join_date DATE DEFAULT SYSDATE

CONSTRAINT member_join_date_nn NOT NULL);

Column_
Name

MEMBER_
ID

LAST_
NAME

FIRST_NAM
E

ADDRESS CITY PHONE JOIN
_
DATE

Key
Type

PK

Null/
Unique

NN,U NN NN

Default
Value

 System
Date

Data
Type

NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE

Length 10 25 25 100 30 15

SQL1 A-38

Practice 14 Solutions (continued)
b. Table name: TITLE

CREATE TABLE title
(title_id NUMBER(10)

CONSTRAINT title_title_id_pk PRIMARY KEY,
title VARCHAR2(60)

CONSTRAINT title_title_nn NOT NULL,
description VARCHAR2(400)

CONSTRAINT title_description_nn NOT NULL,
rating VARCHAR2(4)

CONSTRAINT title_rating_ck CHECK
(rating IN ('G', 'PG', 'R', 'NC17', 'NR')),

category VARCHAR2(20),
CONSTRAINT title_category_ck CHECK

(category IN ('DRAMA', 'COMEDY', 'ACTION',
'CHILD', 'SCIFI', 'DOCUMENTARY')),

release_date DATE);

Column_
Name

TITLE_ID TITLE DESCRIPTION RATING CATEGORY RELEASE_
DATE

Key
Type

PK

Null/
Unique

NN,U NN NN

Check G, PG, R,
NC17, NR

DRAMA,
COMEDY,
ACTION,
CHILD,
SCIFI,
DOCUMEN
TARY

Data Type NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE

Length 10 60 400 4 20

SQL1 A-39

Practice 14 Solutions (continued)

c. Table name: TITLE_COPY

CREATE TABLE title_copy
(copy_id NUMBER(10),
title_id NUMBER(10)
CONSTRAINT title_copy_title_if_fk REFERENCES title(title_id),
status VARCHAR2(15)
CONSTRAINT title_copy_status_nn NOT NULL
CONSTRAINT title_copy_status_ck CHECK (status IN
('AVAILABLE', 'DESTROYED','RENTED', 'RESERVED')),
CONSTRAINT title_copy_copy_id_title_id_pk

PRIMARY KEY (copy_id, title_id));

Column
Name

COPY_ID TITLE_ID STATUS

Key
Type

PK PK,FK

Null/
Unique

NN,U NN,U NN

Check AVAILABLE,
DESTROYED,
RENTED,
RESERVED

FK Ref
Table

 TITLE

FK Ref
Col

 TITLE_ID

Data
Type

NUMBER NUMBER VARCHAR2

Length 10 10 15

SQL1 A-40

Practice 14 Solutions (continued)
d. Table name: RENTAL

CREATE TABLE rental
(book_date DATE DEFAULT SYSDATE,
member_id NUMBER(10)

CONSTRAINT rental_member_id_fk
REFERENCES member(member_id),

copy_id NUMBER(10),
act_ret_date DATE,
exp_ret_date DATE DEFAULT SYSDATE + 2,
title_id NUMBER(10),

CONSTRAINT rental_book_date_copy_title_pk
PRIMARY KEY (book_date, member_id,
copy_id,title_id),
CONSTRAINT rental_copy_id_title_id_fk
FOREIGN KEY (copy_id, title_id)
REFERENCES title_copy(copy_id, title_id));

Column
Name

BOOK_
DATE

MEMBER_
ID

COPY_
ID

ACT_RET_
DATE

EXP_RET_
DATE

TITLE_
ID

Key
Type

PK PK,FK1 PK,FK2 PK,FK2

Default
Value

System
Date

 System Date
+ 2 days

FK Ref
Table

 MEMBER TITLE_
COPY

 TITLE_
COPY

FK Ref
Col

 MEMBER_I
D

COPY_
ID

 TITLE_ID

Data
Type

DATE NUMBER NUMBER DATE DATE NUMBER

Length 10 10 10

SQL1 A-41

Practice 14 Solutions (continued)
e. Table name: RESERVATION

CREATE TABLE reservation
(res_date DATE,
member_id NUMBER(10)

CONSTRAINT reservation_member_id
REFERENCES member(member_id),

title_id NUMBER(10)
CONSTRAINT reservation_title_id
REFERENCES title(title_id),

CONSTRAINT reservation_resdate_mem_tit_pk PRIMARY KEY
(res_date, member_id, title_id));

Column
Name

RES_
DATE

MEMBER_
ID

TITLE_
ID

Key
Type

PK PK,FK1 PK,FK2

Null/
Unique

NN,U NN,U NN

FK Ref
Table

 MEMBER TITLE

FK Ref
Column

 MEMBER_ID TITLE_ID

Data Type DATE NUMBER NUMBER

Length 10 10

SQL1 A-42

Practice 14 Solutions (continued)

2. Verify that the tables and constraints were created properly by checking the data dictionary.

SELECT table_name
FROM user_tables
WHERE table_name IN ('MEMBER', 'TITLE', 'TITLE_COPY',

'RENTAL', 'RESERVATION');

SELECT constraint_name, constraint_type, table_name
FROM user_constraints
WHERE table_name IN ('MEMBER', 'TITLE', 'TITLE_COPY',

'RENTAL', 'RESERVATION');

3. Create sequences to uniquely identify each row in the MEMBER table and the TITLE table.
a. Member number for the MEMBER table: start with 101; do not allow caching of the

values. Name the sequence MEMBER_ID_SEQ.

CREATE SEQUENCE member_id_seq
START WITH 101
NOCACHE;

b. Title number for the TITLE table: start with 92; no caching. Name the sequence
TITLE_ID_SEQ.

CREATE SEQUENCE title_id_seq
START WITH 92
NOCACHE;

c. Verify the existence of the sequences in the data dictionary.

SELECT sequence_name, increment_by, last_number
FROM user_sequences
WHERE sequence_name IN ('MEMBER_ID_SEQ', 'TITLE_ID_SEQ');

SQL1 A-43

Practice 14 Solutions (continued)

4. Add data to the tables. Create a script for each set of data to add.
a. Add movie titles to the TITLE table. Write a script to enter the movie information. Save the

statements in a script named lab14_4a.sql. Use the sequences to uniquely identify each
title. Enter the release dates in the DD-MON-YYYY format. Remember that single quotation
marks in a character field must be specially handled. Verify your additions.

SET ECHO OFF
INSERT INTO title(title_id, title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'Willie and Christmas Too',

'All of Willie''s friends make a Christmas list for
Santa, but Willie has yet to add his own wish list.',

'G', 'CHILD', TO_DATE('05-OCT-1995','DD-MON-YYYY')
/
INSERT INTO title(title_id , title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'Alien Again', 'Yet another

installment of science fiction history. Can the
heroine save the planet from the alien life form?',
'R', 'SCIFI', TO_DATE('19-MAY-1995','DD-MON-YYYY'))

/
INSERT INTO title(title_id, title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'The Glob', 'A meteor crashes

near a small American town and unleashes carnivorous
goo in this classic.', 'NR', 'SCIFI',

TO_DATE('12-AUG-1995','DD-MON-YYYY'))
/
INSERT INTO title(title_id, title, description, rating,

category, release_date)
VALUES (title_id_seq.NEXTVAL, 'My Day Off', 'With a little

luck and a lot ingenuity, a teenager skips school for
a day in New York.', 'PG', 'COMEDY',

TO_DATE('12-JUL-1995','DD-MON-YYYY'))
/
...
COMMIT
/
SET ECHO ON

SELECT title
FROM title;

SQL1 A-44

Practice 14 Solutions (continued)

Title Description Rating Category Release_date

Willie and
Christmas
Too

All of Willie’s friends
make a Christmas list for
Santa, but Willie has yet to
add his own wish list.

G CHILD 05-OCT-1995

Alien Again Yet another installation of
science fiction history. Can
the heroine save the planet
from the alien life form?

R SCIFI 19-MAY-1995

The Glob A meteor crashes near a
small American town and
unleashes carnivorous goo
in this classic.

NR SCIFI 12-AUG-1995

My Day Off With a little luck and a lot
of ingenuity, a teenager
skips school for a day in
New York.

PG COMEDY 12-JUL-1995

Miracles on
Ice

A six-year-old has doubts
about Santa Claus, but she
discovers that miracles
really do exist.

PG DRAMA 12-SEP-1995

Soda Gang After discovering a cache
of drugs, a young couple
find themselves pitted
against a vicious gang.

NR ACTION 01-JUN-1995

SQL1 A-45

Practice 14 Solutions (continued)
b. Add data to the MEMBER table. Place the insert statements in a script named
lab14_4b.sql. Execute commands in the script. Be sure to use the sequence to add the
member numbers.

SET ECHO OFF
SET VERIFY OFF
INSERT INTO member(member_id, first_name, last_name, address,

city, phone, join_date)
VALUES (member_id_seq.NEXTVAL, '&first_name', '&last_name',

'&address', '&city', '&phone', TO_DATE('&join_date',
'DD-MM-YYYY');

COMMIT;
SET VERIFY ON
SET ECHO ON

F irst_
N a m e

Las t_Nam e A d d r e s s C ity P h o n e Join_D a te

C a r m e n Velasquez 283 K ing Street Seatt le 206-899-6666 08- M A R - 1 9 9 0

L a D o ris N g a o 5 M o d r a n y B ratislava 586-355-8882 08- M A R - 1 9 9 0

M idori Nagayam a 6 8 V ia C e n trale Sao Pao lo 254-852-5764 17-JU N -1991

M ark Q u ick-to-
See

6 9 2 1 K ing
W ay

Lagos 63 -559-7777 07-APR-1990

Audry Ropeburn 8 6 C h u S treet H o n g K o n g 41-559-87 18-JA N -1991

M o lly U rguhar t 3035 Laur ier Q u e b e c 418-542-9988 18-JA N -1991

SQL1 A-46

Practice 14 Solutions (continued)
c. Add the following movie copies in the TITLE_COPY table:
Note: Have the TITLE_ID numbers available for this exercise.

INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 92, 'AVAILABLE');
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 93, 'AVAILABLE');
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (2, 93, 'RENTED');
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 94, 'AVAILABLE');
INSERT INTO title_copy(copy_id, title_id, status)
VALUES (1, 95, 'AVAILABLE');
INSERT INTO title_copy(copy_id, title_id,status)
VALUES (2, 95, 'AVAILABLE');
INSERT INTO title_copy(copy_id, title_id,status)
VALUES (3, 95, 'RENTED');
INSERT INTO title_copy(copy_id, title_id,status)
VALUES (1, 96, 'AVAILABLE');
INSERT INTO title_copy(copy_id, title_id,status)
VALUES (1, 97, 'AVAILABLE');

Title Copy_Id Status
Willie and Christmas Too 1 AVAILABLE
Alien Again 1 AVAILABLE
 2 RENTED
The Glob 1 AVAILABLE
My Day Off 1 AVAILABLE
 2 AVAILABLE
 3 RENTED
Miracles on Ice 1 AVAILABLE
Soda Gang 1 AVAILABLE

SQL1 A-47

Practice 14 Solutions (continued)

d. Add the following rentals to the RENTAL table:
Note: Title number may be different depending on sequence number.

INSERT INTO rental(title_id, copy_id, member_id,
book_date, exp_ret_date, act_ret_date)

VALUES (92, 1, 101, sysdate-3, sysdate-1, sysdate-2);
INSERT INTO rental(title_id, copy_id, member_id,

book_date, exp_ret_date, act_ret_date)
VALUES (93, 2, 101, sysdate-1, sysdate-1, NULL);
INSERT INTO rental(title_id, copy_id, member_id,

book_date, exp_ret_date, act_ret_date)
VALUES (95, 3, 102, sysdate-2, sysdate, NULL);
INSERT INTO rental(title_id, copy_id, member_id,

book_date, exp_ret_date,act_ret_date)
VALUES (97, 1, 106, sysdate-4, sysdate-2, sysdate-2);
COMMIT;

Title_
Id

Copy_
Id

Member_
Id Book_date Exp_Ret_Date Act_Ret_Date

92 1 101 3 days ago 1 day ago 2 days ago

93 2 101 1 day ago 1 day from now

95 3 102 2 days ago Today

97 1 106 4 days ago 2 days ago 2 days ago

SQL1 A-48

Practice 14 Solutions (continued)
5. Create a view named TITLE_AVAIL to show the movie titles and the availability of

each copy and its expected return date if rented. Query all rows from the view. Order the results by
title.

CREATE VIEW title_avail AS
SELECT t.title, c.copy_id, c.status, r.exp_ret_date
FROM title t, title_copy c, rental r
WHERE t.title_id = c.title_id
AND c.copy_id = r.copy_id(+)
AND c.title_id = r.title_id(+);

SELECT *
FROM title_avail
ORDER BY title, copy_id;

6. Make changes to data in the tables.
a. Add a new title. The movie is “Interstellar Wars,” which is rated PG and classified as a

science fiction movie. The release date is 07-JUL-77. The description is “Futuristic interstellar
action movie. Can the rebels save the humans from the evil empire?” Be sure to add a title
copy record for two copies.

INSERT INTO title(title_id, title, description, rating,
category, release_date)

VALUES (title_id_seq.NEXTVAL, 'Interstellar Wars',
'Futuristic interstellar action movie. Can the
rebels save the humans from the evil Empire?',
'PG', 'SCIFI', '07-JUL-77');

INSERT INTO title_copy (copy_id, title_id, status)
VALUES (1, 98, 'AVAILABLE');
INSERT INTO title_copy (copy_id, title_id, status)
VALUES (2, 98, 'AVAILABLE');

b. Enter two reservations. One reservation is for Carmen Velasquez, who wants to rent
“Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent “Soda Gang.”

INSERT INTO reservation (res_date, member_id, title_id)
VALUES (SYSDATE, 101, 98);
INSERT INTO reservation (res_date, member_id, title_id)
VALUES (SYSDATE, 104, 97);

SQL1 A-49

Practice 14 Solutions (continued)
c. Customer Carmen Velasquez rents the movie “Interstellar Wars,” copy 1. Remove her

reservation for the movie. Record the information about the rental. Allow the default
value for the expected return date to be used. Verify that the rental was recorded by using
the view you created.

INSERT INTO rental(title_id, copy_id, member_id)
VALUES (98,1,101);
UPDATE title_copy
SET status= 'RENTED'
WHERE title_id = 98
AND copy_id = 1;
DELETE
FROM reservation
WHERE member_id = 101;
SELECT *
FROM title_avail
ORDER BY title, copy_id;

7. Make a modification to one of the tables.
a. Add a PRICE column to the TITLE table to record the purchase price of the video. The

column should have a total length of eight digits and two decimal places. Verify your
modifications.
ALTER TABLE title
ADD (price NUMBER(8,2));
DESCRIBE title

SQL1 A-50

Practice 14 Solutions (continued)
b. Create a script named lab14_7b.sql that contains update statements that update each

video with a price according to the following list. Run the commands in the script.
Note: Have the TITLE_ID numbers available for this exercise.

SET ECHO OFF
SET VERIFY OFF
DEFINE price=
DEFINE title_id=
UPDATE title
SET price = &price
WHERE title_id = &title_id;
SET VERIFY OFF
SET ECHO OFF

c. Ensure that in the future all titles contain a price value. Veri fy the constraint.

ALTER TABLE title
MODIFY (price CONSTRAINT title_price_nn NOT NULL);
SELECT constraint_name, constraint_type,

search_condition
FROM user_constraints
WHERE table_name = 'TITLE';

Title Price

Willie and Christmas Too 25
Alien Again 35
The Glob 35
My Day Off 35
Miracles on Ice 30
Soda Gang 35
Interstellar Wars 29

SQL1 A-51

Practice 14 Solutions (continued)
8. Create a report titled Customer History Report. This report contains each customer's

history of renting videos. Be sure to include the customer name, movie rented, dates of the
rental, and duration of rentals. Total the number of rentals for all customers for the reporting
period. Save the commands that generate the report in a script file named lab14_8.sql.

SET ECHO OFF
SET VERIFY OFF
TTITLE 'Customer History Report'
BREAK ON member SKIP 1 ON REPORT
SELECT m.first_name||' '||m.last_name MEMBER, t.title,

r.book_date, r.act_ret_date - r.book_date DURATION
FROM member m, title t, rental r
WHERE r.member_id = m.member_id
AND r.title_id = t.title_id
ORDER BY member;

CLEAR BREAK
TTITLE OFF
SET VERIFY ON
SET ECHO ON

SQL1 A-52

Table Descriptions
and Data

SQL1 B-2

COUNTRIES Table

DESCRIBE countries

SELECT * FROM countries;

SQL1 B-3

DEPARTMENTS Table

DESCRIBE departments

SELECT * FROM departments;

SQL1 B-4

EMPLOYEES Table

DESCRIBE employees

SELECT * FROM employees;

Continued on next page

SQL1 B-5

EMPLOYEES Table (continued)

SQL1 B-6

JOBS Table

DESCRIBE jobs

SELECT * FROM jobs;

SQL1 B-7

JOB_GRADES Table

DESCRIBE job_grades

SELECT * FROM job_grades;

SQL1 B-8

JOB_HISTORY Table

DESCRIBE job_history

SELECT * FROM job_history;

SQL1 B-9

LOCATIONS Table

DESCRIBE locations

SELECT * FROM locations;

SQL1 B-10

REGIONS Table

DESCRIBE regions

SELECT * FROM regions;

Copyright © Oracle Corporation, 2001. All rights reserved.

Using SQL*Plus

SQL1 C-2

Lesson Aim
You may want to create SELECT statements that can be used again and again. This lesson also covers the
use of SQL*Plus commands to execute SQL statements. You learn how to format output using SQL*Plus
commands, edit SQL commands, and save scripts in SQL*Plus.

C-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
• Log in to SQL*Plus
• Edit SQL commands
• Format output using SQL*Plus commands
• Interact with script files

SQL1 C-3

SQL and SQL*Plus
SQL is a command language for communication with the Oracle9i Server from any tool or application.
Oracle SQL contains many extensions. When you enter a SQL statement, it is stored in a part of memory
called the SQL buffer and remains there until you enter a new SQL statement.
SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle9i Server for
execution. It contains its own command language.
Features of SQL

• SQL can be used by a range of users, including those with little or no programming
experience.

• It is a nonprocedural language.
• It reduces the amount of time required for creating and maintaining systems.
• It is an English-like language.

Features of SQL*Plus
• SQL*Plus accepts ad hoc entry of statements.
• It accepts SQL input from files.
• It provides a line editor for modifying SQL statements.
• It controls environmental settings.
• It formats query results into basic reports.
• It accesses local and remote databases.

C-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and SQL*Plus Interaction

SQL*Plus

Buffer

Server

SQL statements

Query results

SQL
scripts

SQL1 C-4

SQL and SQL*Plus (continued)
The following table compares SQL and SQL*Plus:

C-4 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements versus SQL*Plus
Commands

SQL
statements

SQL
• A language
• ANSI standard
• Keywords cannot be

abbreviated
• Statements manipulate

data and table
definitions in the
database

SQL*Plus
• An environment
• Oracle proprietary
• Keywords can be

abbreviated
• Commands do not

allow manipulation of
values in the database

SQL
buffer

SQL*Plus
commands

SQL*Plus
buffer

SQL SQL*Plus
Is a language for communicating with the Oracle
server to access data

Recognizes SQL statements and sends them to the
server

Is based on American National Standards
Institute (ANSI) standard SQL

Is the Oracle proprietary interface for executing
SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Is entered into the SQL buffer on one or more
lines

Is entered one line at a time, not stored in the SQL
buffer

Does not have a continuation character Uses a dash (-) as a continuation character if the
command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses a termination character to execute
commands immediately

Does not require termination characters; executes
commands immediately

Uses functions to perform some formatting Uses commands to format data

SQL1 C-5

SQL*Plus
SQL*Plus is an environment in which you can do the following:

• Execute SQL statements to retrieve, modify, add, and remove data from the database
• Format, perform calculations on, store, and print query results in the form of reports
• Create script files to store SQL statements for repetitive use in the future

SQL*Plus commands can be divided into the following main categories:

C-5 Copyright © Oracle Corporation, 2001. All rights reserved.

• Log in to SQL*Plus.
• Describe the table structure.
• Edit your SQL statement.
• Execute SQL from SQL*Plus.
• Save SQL statements to files and append SQL

statements to files.
• Execute saved files.
• Load commands from file to buffer

to edit.

Overview of SQL*Plus

Category Purpose
Environment Affect the general behavior of SQL statements for the session
Format Format query results
File manipulation Save, load, and run script files
Execution Send SQL statements from SQL buffer to the Oracle server
Edit Modify SQL statements in the buffer
Interaction Create and pass variables to SQL statements, print variable values, and

print messages to the screen
Miscellaneous Connect to the database, manipulate the SQL*Plus environment, and

display column definitions

SQL1 C-6

C-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging In to SQL*Plus

• From a Windows environment:

• From a command line:

sqlplus [username[/password
[@database]]]

Logging In to SQL*Plus
How you invoke SQL*Plus depends on which type of operating system or Windows environment you are
running.
To log in through a Windows environment:

1. Select Start > Programs > Oracle for Windows NT > SQL*Plus.
2. Fill in the username, password, and database name.

To log in through a command line environment:
1. Log on to your machine.
2. Enter the SQL*Plus command shown in the slide.

In the syntax:
username your database username.
password your database password (if you enter your password here, it is visible.)
@database the database connect string.

Note: To ensure the integrity of your password, do not enter it at the operating system prompt. Instead,
enter only your username. Enter your password at the Password prompt.
After you log in to SQL*Plus, you see the following message (if you are using SQL*Plus version 9i):

SQL*Plus: Release 9.0.1.0.0 - Development on Tue Jan 9 08:44:28 2001
(c) Copyright 2000 Oracle Corporation. All rights reserved.

SQL1 C-7

C-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

Use the SQL*Plus DESCRIBE command to display the
structure of a table.

DESC[RIBE] tablename

Displaying Table Structure
In SQL*Plus you can display the structure of a table using the DESCRIBE command. The result of the
command is a display of column names and data types as well as an indication if a column must contain
data.
In the syntax:

tablename the name of any existing table, view, or synonym that is accessible to the
user

To describe the JOB_GRADES table, use this command:

SQL> DESCRIBE job_grades
Name Null? Type
--- -------- -----------
GRADE_LEVEL VARCHAR2(3)
LOWEST_SAL NUMBER
HIGHEST_SAL NUMBER

SQL1 C-8

C-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

SQL> departments

Name Null? Type
----------------------- -------- ------------
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

DESCRIBE

Displaying Table Structure (continued)
The example in the slide displays the information about the structure of the DEPARTMENTS table.

In the result:
Null? specifies whether a column must contain data; NOT NULL indicates that a

column must contain data
Type displays the data type for a column

The following table describes the data types:

Data type Description
NUMBER(p,s) Number value that has a maximum number of digits p , the number

of digits to the right of the decimal point s

VARCHAR2(s) Variable-length character value of maximum size s

DATE

Date and time value between January 1, 4712 B.C., and December
31, 9999 A.D.

CHAR(s) Fixed-length character value of size s

SQL1 C-9

SQL*Plus Editing Commands
SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Guidelines
• If you press [Enter] before completing a command, SQL*Plus prompts you with a line number.
• You terminate the SQL buffer either by entering one of the terminator characters (semicolon or slash)

or by pressing [Enter] twice. The SQL prompt then appears.

C-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus Editing Commands

• A[PPEND] text
• C[HANGE] / old / new
• C[HANGE] / text /
• CL[EAR] BUFF[ER]
• DEL
• DEL n
• DEL m n

Command Description
A[PPEND] text Adds text to the end of the current line
C[HANGE] / old / new Changes old text to new in the current line
C[HANGE] / text / Deletes text from the current line
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Deletes line n
DEL m n Deletes lines m to n inclusive

SQL1 C-10

C-10 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus Editing Commands

• I[NPUT]
• I[NPUT] text
• L[IST]
• L[IST] n
• L[IST] m n
• R[UN]
• n
• n text
• 0 text

SQL*Plus Editing Commands (continued)

Note: You can enter only one SQL*Plus command per SQL prompt. SQL*Plus commands are not stored
in the buffer. To continue a SQL*Plus command on the next line, end the first line with a hyphen (-).

Command Description
I[NPUT] Inserts an indefinite number of lines
I[NPUT] text Inserts a line consisting of text
L[IST] Lists all lines in the SQL buffer
L[IST] n Lists one line (specified by n)
L[IST] m n Lists a range of lines (m to n) inclusive
R[UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line
n text Replaces line n with text
0 text Inserts a line before line 1

SQL1 C-11

Using LIST, n, and APPEND
• Use the L[IST] command to display the contents of the SQL buffer. The * beside line 2 in the

buffer indicates that line 2 is the current line. Any edits that you made apply to the current line.
• Change the number of the current line by entering the number of the line you want to edit. The new

current line is displayed.
• Use the A[PPEND] command to add text to the current line. The newly edited line is displayed.

Verify the new contents of the buffer by using the LIST command.
Note: Many SQL*Plus commands including LIST and APPEND can be abbreviated to just their first letter.
LIST can be abbreviated to L, APPEND can be abbreviated to A.

C-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using LIST, n, and APPEND

1 SELECT last_name
2* FROM employees

SQL> LIST

SQL> 1

1* SELECT last_name

SQL> A , job_id

1* SELECT last_name, job_id

SQL> L

1 SELECT last_name, job_id
2* FROM employees

SQL1 C-12

Using the CHANGE Command
• Use L[IST] to display the contents of the buffer.
• Use the C[HANGE] command to alter the contents of the current line in the SQL buffer. In this case,

replace the employees table with the departments table. The new current line is displayed.
• Use the L[IST] command to verify the new contents of the buffer.

C-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the CHANGE Command

SQL> L

1* SELECT * from employees

SQL> L

1* SELECT * from departments

SQL> c/employees/departments

1* SELECT * from departments

SQL1 C-13

C-13 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL*Plus File Commands

• SAVE filename
• GET filename
• START filename
• @ filename
• EDIT filename
• SPOOL filename
• EXIT

SQL*Plus File Commands
SQL statements communicate with the Oracle server. SQL*Plus commands control the environment,
format query results, and manage files. You can use the commands described in the following table:

Command Description

SAV[E] filename [.ext]
[REP[LACE]APP[END]]

Saves current contents of SQL buffer to a file. Use APPEND
to add to an existing file; use REPLACE to overwrite an
existing file. The default extension is .sql.

GET filename [.ext]

Writes the contents of a previously saved file to the SQL
buffer. The default extension for the filename is .sql.

STA[RT] filename [.ext] Runs a previously saved command file
@ filename Runs a previously saved command file (same as START)
ED[IT]

Invokes the editor and saves the buffer contents to a file
named afiedt.buf

ED[IT] [filename[.ext]]

Invokes the editor to edit contents of a saved file

SPO[OL] [filename[.ext]|
OFF|OUT]

Stores query results in a file. OFF closes the spool file. OUT
closes the spool file and sends the file results to the system
printer.

EXIT Leaves SQL*Plus

SQL1 C-14

SAVE
Use the SAVE command to store the current contents of the buffer in a file. In this way, you can store
frequently used scripts for use in the future.

START
Use the START command to run a script in SQL*Plus.

EDIT
Use the EDIT command to edit an existing script. This opens an editor with the script file in it. When you
have made the changes, exit the editor to return to the SQL*Plus command line.

C-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the SAVE and START Commands

Created file my_query

SQL> START my_query

SQL> L
1 SELECT last_name, manager_id, department_id
2* FROM employees

SQL> SAVE my_query

LAST_NAME MANAGER_ID DEPARTMENT_ID
------------------------- ---------- -------------
King 90
Kochhar 100 90
...
20 rows selected.

SQL1 C-15

C-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Use SQL*Plus as an environment to:
• Execute SQL statements
• Edit SQL statements
• Format output
• Interact with script files

Summary
SQL*Plus is an execution environment that you can use to send SQL commands to the database server and
to edit and save SQL commands. You can execute commands from the SQL prompt or from a script file.

SQL1 C-16

SQL1 Index-1

Note: Bolded number refers to entire lesson.

A

APPEND Command c-11

Adding Data through a View 11-16

ADD_MONTHS Function 3-21

ALL Operator 6-16

Alias 1-4, 1-17, 1-16, 2-7, 2-24, 11-9

Table Aliases 4-12

ALL_COL_COMMENT Data Dictionary View 9-30

ALL_TAB_COMMENT Data Dictionary View 9-30

ALTER SEQUENCE Statement 12-12

ALTER TABLE Statement 9-20, 9-21, 10-17, 10-20, 10-21, 13-11

ALTER USER Statement 13-11

Ambiguous Column Names 4-11

American National Standards Institute I-24

ANSI I-24

ANY Operator 6-15

Application Server I-5

Arguments 3-3, 3-5

Arithmetic Expression 1-9

Arithmetic Operator 1-9

AS Subquery Clause 9-18

Assigning Privileges 13-7

Attributes I-16, I-19

AVG Function 5-6, 5-7

Index

SQL1 Index-2

B

BETWEEN Operator 2-10

BREAK Command 7-18

BTITLE Command 7-19

C

CHANGE Command c-12

Caching Sequence 12-1

Calculations in Expressions 1-9

Cardinality I-18

Cartesian Product 4-4, 4-5

CASE Expression 3-51, 3-52

CASCADE CONSTRAINTS Clause 10-22

Character Data Type in Functions 3-4

Character Strings 2-5, 2-6

CHECK Constraint 10-16

CLEAR BREAK Command 7-18

COALESCE Function 3-49

COLUMN Command 7-16, 7-17

Column Level Constraints 10-8

Command or Script Files 7-20

COMMENT Statement 9-30

COMMIT Statement 8-2, 8-33, 8-35, 8-39, 8-40, 9-8

Comparison Operator, Comparison Conditions 2-7

Composite Unique Key 10-10

CONCAT Function 3-11

Concatenation Operator 1-18

Index

SQL1 Index-3

C

Conditional If-Then-Else Logic 3-51

Conditional Processing 3-51

Conditions, Logical 2-15

CONSTRAINTS 10

CASCADE CONSTRAINTS Clause 10-22

CHECK Constraint 10-16

Column Level Constraints 10-8

Defining Constraints 10-5

Deleting a Record with an Integrity Constraint 8-22

Disabling 10-20

Dropping a Constraint 10-19

FOREIGN KEY 10-13, 10-14, 10-15, I-19

NOT NULL Constraint 10-7

Primary Key 10-11

READ ONLY Constraint 11-19

REFERENCE Constraint 10-15

Referential Integrity Constraint 10-13

Table Level Constraints 10-8

UNIQUE Constraint 10-9, 10-10

Controlling Database Access 13

COUNT Function 5-8

CREATE INDEX Statement 12-17

Creating Scripts 1-26

CREATE SEQUENCE Statement 12-5

CREATE TABLE Statement 9

CREATE USER Statement 13-6

CREATE VIEW Statement 11-7

CURRVAL 9-7, 12-8

CYCLE Clause (Sequences) 12-6

SQL1 Index-4

D

Date Functions 3-6

Data Control Language (DCL) Statements 8-33, 9

Data Definition Language (DDL) Statements 8-33, 9-5, 13

Data Manipulation Language (DML) Statements 8

DML Operations through a View 11-14

Data Dictionary Tables 9-9

Data from More than One Table (Joins) 4

Data Structures in the Oracle Database 9-3, 9-5

Data Types 3-25

Data Warehouse Applications I-8

Database Links 13-19

Date Conversion Functions 3-4, 3-35

DateTime Data Type 9-14

DECODE Expression 3-51, 3-54

DEFAULT Clause 8-26, 8-27, 9-7

Default Date Display 2-6, 3-17

Default Sort Order 2-23

DEFINE Command 7-5, 7-11

Defining Constraints 10-5

DELETE Statement 8-19, 8-20, 13-16

DESCRIBE Command 1-29, 8-7, 10-24, 11-13, c-7

DISABLE Clause 10-20

DISTINCT Keyword 1-4, 1-23, 5-5, 5-10

Dropping a Constraint 10-19

DROP ANY INDEX Statement 12-2

DROP ANY VIEW Statement 11-20

SQL1 Index-5

D

DROP COLUMN Clause 9-25

DROP INDEX Statement 12

DROP SEQUENCE Statement 12-14

DROP SYNONYM 12-24

DROP TABLE Statement 9-27

DROP UNUSED COLUMNS Clause 9-26

DROP VIEW Statement 11-20

DUAL Table 3-14, 3-18

E

e-Business I-3

EDIT Command c-14

Entity I-16, I-17, I-18

Entity Relationship Diagram I-16, I-17, I-16

Equijoins 4-8, 4-27

ESCAPE Option 2-13

Exclusive Locks 8-46

Execute Button (in iSQL*Plus) 1-7, 1-32

Executing SQL 1-26

Explicit Data Type Conversion 3-25

Expressions

Calculations in Expressions 1-9

CASE Expression 3-51, 3-52

DECODE Expression 3-51, 3-54

If-Then-Else Logic 3-51

SQL1 Index-6

F

FOREIGN KEY Constraint 10-13, 10-14, 10-15, I-19

Format Mode (fm) 3-31

FRACTIONAL_SECONDS_PRECISION 9-15

FROM Clause 1

FROM Clause Query 11-21

Functions 3, 5

AVG (Average) 5-6, 5-7

Character Data Type in Functions 3-4

COALESCE Function 3-49

CONCAT Function 3-11

COUNT Function 5-8

Date Conversion Functions 3-4, 3-35

INITCAP Function 3-9

INSTR Function 3-11

LAST_DAY Function 3-21

LENGTH Function 3-11

LOWER Function 3-9

LPAD Function 3-11

MAX Function 5-6, 5-7

MIN Function 5-6, 5-7

MONTHS_BETWEEN Function 3-6, 3-21

Multiple-row Function 3-4

NEXT_DAY Function 3-21

NULLIF Function 3-48

Number Functions 3-13

NVL Function 3-45, 3-46, 5-5, 5-12

NVL2 Function 3-47

Returning a Value 3-3

ROUND Function 3-14, 3-21, 3-23

SQL1 Index-7

F

Functions 3, 5

STDDEV Function 5-7

SUBSTR Function 3-11

SUM Function 5-6, 5-7

SYS Function 9-9

SYSDATE Function 3-18, 3-20, 9-7

TO_CHAR Function 3-31, 3-37, 3-39

TO_DATE Function 3-39

TO_NUMBER Function 3-39

TRIM Function 3-11

TRUNC Function 3-15, 3-21, 3-23

UPPER Function 3-9, 3-10

USER Function 9-7

Function-based Indexes 12-21

G

Generating Unique Numbers 12-3

GRANT Statement 13

GROUP BY Clause 5-13, 5-14, 5-15, 5-16

Grouping Data 5

Group Functions 5

Group Functions in a Subquery 6-10

Group Functions and NULL Values 5-11

Guidelines for Creating a View 11-8

H

Hash Sign 3-38

HAVING Clause 5-21, 5-22, 5-23, 6-11

SQL1 Index-8

I

If-Then-Else Logic 3-51

Implicit Data Type Conversion 3-25

Indexes 9-3, 12

CREATE INDEX Statement 12-17

Non-unique Indexes 12-16

Unique Index 10-10, 12-6

When to Create an Index 12-18

INITCAP Function 3-9

Inline Views 11-2, 11-21

Inner Query 6-3, 6-4, 6-5

INSERT Statement 8-5, 8-6, 8-11, 13-18

VALUES Clause 8-5

INSTR Function 3-11

Integrity Constraints 8-17, 10-2

International Standards Organization (ISO) I-24

Internet Features I-7

INTERVAL YEAR TO MONTH Data Type 9-17

IS NOT NULL Operator 2-14

IS NULL Operator 2-14

iSLQL*Plus 1-24

J

Java I-23

Joining Tables 1-3, 4

Cartesian Product 4-4, 4-5

Equijoins 4-8, 4-27

Joining a Table to Itself 4-19

Joining More than Two Tables 4-13

Joining When there is No Matching Record 4-34

Index

SQL1 Index-9

J

Joining Tables 1-3, 4

Left Table 4-32

Natural Joins 4-24, 4-26

Non- equijoins 4-14, 4-15

ON Clause 4-28, 4-29

Outer Join 4-17, 4-18

RIGHT Table 4-33

Three Way Join 4-3

K

Keywords 1-4, 1-7

L

LAST_DAY Function 3-21

LENGTH Function 3-11

LIKE Operator 2-12

LIST Command c-11

Literal Values 1-20

Loading Scripts 1-32

Locks 8-45

Exclusive Locks 8-46

Logical Conditions 2-15

Logical Subsets 11-4

LOWER Function 3-9

LPAD Function 3-11

SQL1 Index-10

M

MAX Function 5-6, 5-7

MERGE Statement 8-28, 8-29

WHEN NOT MATCHED Clause 8-31

MIN Function 5-6, 5-7

MODIFY Clause 9-24

Modify Column 9-23

MONTHS_BETWEEN Function 3-6, 3-21

Multiple Column Subquery 6-7

Multiple-row Function 3-4

Multiple-row Subquery 6-2, 6-7, 6-14

N

Naming Conventions for Tables 9-4

Natural Joins 4-24, 4-26

Nested Queries 6-4

Nested Functions 3-42

NEXT_DAY Function 3-21

NEXTVAL Psuedocolumn 9-7, 12-8

Non- equijoins 4-14, 4-15

Non-unique Indexes 12-16

NOT NULL Constraint 10-7

NULL 1-14, 1-15, 2-14, I-19

NULLIF Function 3-48

Number Functions 3-13

NVL Function 3-45, 3-46, 5-5, 5-12

NVL2 Function 3-47

SQL1 Index-11

O

Object Privileges 13-2

Object Relational Database Management System (ORDBMS) I-2, I-7, I-12

Object-oriented Programming I-7

ON Clause 4-28, 4-29

ON DELETE CASCADE Clause 10-15

ON DELETE SET NULL Clause 10-15

On Line Transaction Processing I-8

OR REPLACE Clause 11-12

Oracle9i Application Server I-4

Oracle9i Database I-4

ORDER BY Clause 2

Default Sort Order 2-23

Order of Precedence 1-12

Outer Join 4-17, 4-18

Outer Query 6-5

P

Primary Key 10-11

Privileges 13

Object Privileges 13-2

Projection 1-3

PUBLIC Keyword 13-5

SQL1 Index-12

R

Read Consistency 8-43, 8-44

READ ONLY Constraint 11-19

REM Command 7-21

REFERENCE Constraint 10-13, 10-15

Referential Integrity Constraint 10-13

Relational Database Management System (RDBMS) I-2, I-13, I-14

Relationships I-16

RENAME Command 9-28

Restricting Rows 2-2

Retrieving Data from a View 11-10

Returning a Value 3-3

REVOKE Command 13-17

ROLLBACK Statement 8-2, 8-33, 8-35, 8-38, 8-41

ROUND Function 3-14, 3-21, 3-23

Row I-19

RR Date Format 3-41

Rules of Precedence 1-13, 2-19

SQL1 Index-13

S

SAVE Command c-14

SAVEPOINT Statement 8-2, 8-35, 8-36

Schema 9-6, 13-4

Script or Command Files 7-20, 7-22, c-2

Creating Scripts 1-26

Loading Scripts 1-32

Search 2-12

SELECT Statement 1

Selection 1-3

Sequences 9-13, 12

Caching Sequence Values 12-11

CREATE SEQUENCE Statement 12-5

CURRVAL 9-7, 12-8

CYCLE Clause 12-6

Generating Unique Numbers 12-3

NEXTVAL 9-7, 12-8

SET Command 7-12

SET Clause 8-15

SET UNUSED Clause 9-26

SET VERIFY ON Command 7-7

Sets of Rows 5-3

Shared Global Area I-23

Single Ampersand Substitution 7-4

Single Row Function 3-4

Single Row Operators 6-8

Single Row Subqueries 6-2, 6-7

SOME Operator 6-15

Sorting Results with the ORDER BY Clause 2

Default Sort Order 2-23

Structured Query Language (SQL) I-2, I-21, I-22, 1-2, 1-24, 1-25

SQL1 Index-14

S

SQL Buffer c-3

SQL*Plus C

SQL*Plus Commands c-2

SQL*Plus Script File 7-3

SQL: 1999 Compliance 4-6, 4-22, 4-30

START Command c-14

Statement 1-4

Statement Level Rollback 8-42

STDDEV Function 5-7

Subqueries 6, 8-16, 8-21, 8-23, 9-18, 11-21

AS Subquery Clause 9-18

FROM Clause Query 11-21

Group Functions in a Subquery 6-10

Inner Query 6-3, 6-4, 6-5

Multiple Column Subquery 6-7

Multiple-row Subquery 6-2, 6-7, 6-14

Nested Queries 6-4

No Rows Returned from the Subquery 6-13

Outer Query 6-5

Placement of the Subquery 6-4

Single Row Subqueries 6-2, 6-7

Subsets, Logical 11-4

Substitution Variables 7-2, 7-3

SUBSTR Function 3-11

SUM Function 5-6, 5-7

Summary Results for Groups of Rows 5-18

SYS Function 9-9

Synonym 9-3, 12-2, 12-3, 12-23, 13-3

SYSDATE Function 3-18, 3-20, 9-7

System Development Life Cycle I-10

System Global Area I-23

SQL1 Index-15

T

Table Aliases 4-12

Table Level Constraints 10-8

Table Prefixes 4-11

Three Way Join 4-30

TIMESTAMP Data Type 9-16

TIMESTAMP WITH TIME ZONE 9-15

TIMESTAMP WITH LOCAL TIME 9-16

INTERVAL YEAR TO MONTH 9-17

TO_CHAR Function 3-31, 3-37, 3-39

TO_DATE Function 3-39

TO_NUMBER Function 3-39

Top-N Analysis 11-2, 11-22, 11-23, 11-24

Transactions 8-32

TRIM Function 3-11

TRUNC Function 3-15, 3-21, 3-23

TRUNCATE TABLE Statement 9-29

TTITLE Command 7-19

Tuple I-19

SQL1 Index-16

U

UNDEFINE Command 7-11

UNIQUE Constraint 10-9, 10-10

Unique Identifier I-18

Unique Index 10-10, 12-6

UPDATE Statement 8, 13-14

SET Clause 8-15

UPPER Function 3-9, 3-10

Users - Creating 13-6

USER Function 9-7

USER_CATALOG Dictionary View 9-10

USER_COL_COMMENTS Dictionary View 9-30

USER_CONS_COLUMNS Dictionary View 10-19, 10-25

USER_CONSTRAINTS Dictionary View 10-4, 10-19, 10-24

USER_DB_LINKS Dictionary View 13-19

USER_INDEXES Dictionary View 12-20

USER_OBJECTS Dictionary View 9-10

USER_SEQUENCES Dictionary View 12-7

USER_TAB_COMMENTS Dictionary View 9-30

USER_TABLES Dictionary View 9-10

USER_UNUSED_COL_TABS Dictionary View 9-26

USING Clause 4-26, 13-20

UTC - Coordinated Universal Time 9-15

SQL1 Index-17

V

VALUES Clause 8-5

Variance 5-7

VERIFY Command 7-7

Views 9-3, 11

Guidelines for Creating a View 11-8

Inline Views 11-2, 11-21

OR REPLACE Clause 11-12

Retrieving Data from a View 11-10

Simple and Complex 11-6

USING Clause 4-26

WITH READ ONLY Clause 11-18

W

WHEN NOT MATCHED Clause 8-31

WHERE Clause 2

Restricting Rows 2-2

Wildcard Symbol 2-12

WITH CHECK OPTION Clause 8-25, 11-17, 13-13, 13-14, 13-15, 13-18

WITH READ ONLY Clause 11-18

X

XML I-23

Y

Year 2000 Compliance 3-17

SQL1 Index-18

